Skip to content

Research at St Andrews

Coastal sabkha dolomites and calcitised sulphates preserving the Lomagundi-Jatuli carbon isotope signal

Research output: Contribution to journalArticle

Author(s)

A. T. Brasier, A. E. Fallick, A. R. Prave, V. A. Melezhik, A. Lepland, FAR-DEEP Scientists

School/Research organisations

Abstract

Palaeoproterozoic Tulomozero Formation carbonates of the Onega basin were targeted by ICDP FAR-DEEP Hole 10B. The recovered rocks contain abundant evidence for Palaeoproterozoic gypsum and anhydrite, particularly in the form of pseudomorphs of inclusion-containing nodules, swallow-tail twinned crystals and evaporite dissolution breccias. Similarly, sand-patch fabric indicates the former presence of surface-covering salt crusts in the Palaeoproterozoic. Atmospheric oxygen and seawater sulphate levels at that time must have been sufficient to allow such sulphates to form. Carbonate delta C-13 values are considered sedimentary or early diagenetic, predating greenschist fades metamorphism associated with the Sve-cofennian Orogeny. These carbonate delta C-13 values range from +7.7 to +15.7 parts per thousand, with the highest (and lowest) values found in dolostones. The dolostones as well as calcitised calcium sulphates record the Lomagundi-Jatuli signal. However evidence for activity of sulphate-reducing and/or methanogenic bacteria seems to be lacking. Dolomite precipitation (or dolomitisation), calcium sulphate calcitisation and production of the high C-13 values (processes which typically involve such bacteria in the Phanerozoic) are thus inferred to have proceeded without the direct influence of sulphate reducers and methanogens. The most plausible explanation for the Lomagundi-Jatuli excursion seems to remain significant sequestration of organic carbon in a location yet to be identified. (C) 2011 Elsevier B.V. All rights reserved.

Close

Details

Original languageEnglish
Pages (from-to)193-211
Number of pages19
JournalPrecambrian Research
Volume189
Issue number1-2
DOIs
Publication statusPublished - Aug 2011

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Hydrothermal dedolomitisation of carbonate rocks of the Paleoproterozoic Zaonega Formation, NW Russia — Implications for the preservation of primary C isotope signals

    Kreitsmann, T., Külaviir, M., Lepland, A., Paiste, K., Paiste, P., Prave, A. R., Sepp, H., Romashkin, A. E., Rychanchik, D. V. & Kirsimäe, K., 3 Mar 2019, In : Chemical Geology. 512, p. 43-57 15 p.

    Research output: Contribution to journalArticle

  2. Crustal reworking and orogenic styles inferred from zircon Hf isotopes: Proterozoic examples from the North Atlantic region

    Spencer, C. J., Kirkland, C. L., Prave, A. R., Strachan, R. A. & Pease, V., Mar 2019, In : Geoscience Frontiers. 10, 2, p. 417-424

    Research output: Contribution to journalArticle

  3. 1.99 Ga mafic magmatism in the Rona terrane of the Lewisian Gneiss Complex in Scotland

    Baker, T. R., Prave, A. R. & Spencer, C. J., 28 Dec 2018, In : Precambrian Research. In press

    Research output: Contribution to journalArticle

  4. Evolution of the Mozambique Belt in Malawi constrained by granitoid U-Pb, Sm-Nd and Lu-Hf isotopic data

    Manda, B. W. C., Cawood, P. A., Spencer, C. J., Prave, T., Robinson, R. & Roberts, N. M. W., 29 Nov 2018, In : Gondwana Research. In press

    Research output: Contribution to journalArticle

  5. Multiple sulphur isotope records tracking basinal and global processes in the 1.98 Ga Zaonega Formation, NW Russia

    Paiste, K., Lepland, A., Zerkle, A. L., Kirsimäe, K., Izon, G. J., Patel, N., McLean, F., Kreitsmann, T., Mänd, K., Bui, T., Romashkin, A., Rychanchik, D. & Prave, A. R., 5 Nov 2018, In : Chemical Geology. 499, p. 151-164 14 p.

    Research output: Contribution to journalArticle

Related by journal

  1. 1.99 Ga mafic magmatism in the Rona terrane of the Lewisian Gneiss Complex in Scotland

    Baker, T. R., Prave, A. R. & Spencer, C. J., 28 Dec 2018, In : Precambrian Research. In press

    Research output: Contribution to journalArticle

  2. A refined late-Cryogenian – Ediacaran Earth history of South China: phosphorous-rich marbles of the Dabie and Sulu orogens

    Prave, A. R., Meng, F., Lepland, A., Kirsmäe, K., Kreitsmann, T. & Jiang, C. Z., Feb 2018, In : Precambrian Research. 305, p. 166-176

    Research output: Contribution to journalArticle

  3. Environmental control on microbial diversification and methane production in the Mesoarchean

    Stueeken, E. E. & Buick, R., Jan 2018, In : Precambrian Research. 304, p. 64-72

    Research output: Contribution to journalArticle

  4. Reconstructing Cryogenian to Ediacaran successions and paleogeography of the South China Block

    Qi, L., Xu, Y., Cawood, P. A. & Du, Y., 7 Jul 2018, In : Precambrian Research. In press

    Research output: Contribution to journalArticle

ID: 23474964