Skip to content

Research at St Andrews

Cobalt diselenide nanorods grafted on graphitic carbon nitride: a synergistic catalyst for oxygen reactions in rechargeable Li-O2 battery

Research output: Contribution to journalArticle


Surender Kumar, Anirudha Jena, Yao Chong Hu, Chaolun Liang, Wuzong Zhou, Tai-Feng Hung, Wen-Sheng Chang, Ho Chang, Ru-Shi Liu

School/Research organisations


CoSe2 nanorods are prepared via hydrothermal approach and characterized by using various techniques to examine crystallinity, crystallite size, morphology, and defects present within. CoSe2 is grafted on graphitic carbon nitride (g-C3N4) for oxygen reactions in a non-aqueous medium. Li-O2 batteries are assembled in dimethyl sulfoxide (DMSO) and investigated for charge-discharge cycles at various current densities. Li-O2 battery with CoSe2@g-C3N4 delivers 2158 mAh g−1 discharge capacity at 0.1 mA cm−2 current density. The charging potential of the Li-O2 battery is reduced by 280 mV in a combination of CoSe2 and g-C3N4. Electrochemical impedance spectroscopy (EIS) of the Li-O2 battery shows that charge transfer resistance of CoSe2 catalyst is reduced from 311 Ω to 181 Ω by adding g-C3N4. Tetra-ethylene glycol dimethyl ether also used as electrolyte to ensure better performing in terms of stability of the cell in comparison to DMSO electrolyte. Upon illumination of solar light without any redox mediator, the overpotential of charging step can be reduced. Under solar light illumination, the charging potential plateau shows a reduction of 330 and 170 mV in CoSe2 and CoSe2@g-C3N4 samples, respectively.


Original languageEnglish
Pages (from-to)29-35
Issue number1
Early online date25 Sep 2017
Publication statusPublished - Jan 2018

    Research areas

  • Cobalt diselenide, Graphitic carbon nitride, Metal-air battery, Photocatalyst, Rechargeable Li-O2 battery

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Effect of oxygen coordination environment of Ca-Mn oxides on catalytic performance of Pd supported catalysts for aerobic oxidation of 5-hydroxymethyl-2-furfural

    Yang, J., Yu, H., Wang, Y., Qi, F., Liu, H., Lou, L-L., Yu, K., Zhou, W. & Liu, S., 7 Dec 2019, In : Catalysis Science & Technology. 9, 23, p. 6659-6668

    Research output: Contribution to journalArticle

  2. Asymmetric oxygen vacancies: the intrinsic redox active sites in metal oxide catalysts

    Yu, K., Lou, L-L., Liu, S. & Zhou, W., 5 Dec 2019, In : Advanced Science . Early View, 8 p., 1901970.

    Research output: Contribution to journalArticle

  3. Mechanism–property correlation in coordination polymer crystals toward design of a superior sorbent

    Li, C-P., Zhou, H., Wang, J-J., Liu, B-L., Wang, S., Yang, X., Wang, Z-L., Liu, C-S., Du, M. & Zhou, W., 13 Nov 2019, In : ACS Applied Materials & Interfaces. 11, 45, p. 42375-42384 10 p.

    Research output: Contribution to journalArticle

  4. The active oxygen species promoted catalytic oxidation of 5-hydroxymethyl-2-furfural on facet-specific Pt nanocrystals

    Liu, Y., Ma, H-Y., Lei, D., Lou, L-L., Liu, S., Zhou, W., Wang, G-C. & Yu, K., 6 Sep 2019, In : ACS Catalysis. 9, 9, p. 8306-8315

    Research output: Contribution to journalArticle

  5. Experimental and theoretical investigations of Cs+ adsorption on crown ethers modified magnetic adsorbent

    Liu, Z., Zhou, Y., Guo, M., Lv, B., Wu, Z. & Zhou, W., 5 Jun 2019, In : Journal of Hazardous Materials . 371, p. 712-720

    Research output: Contribution to journalArticle

Related by journal

  1. Analysis of the solid electrolyte interphase on hard carbon electrodes in sodium-ion batteries

    Carboni, M., Manzi, J., Armstrong, A. R., Billaud, J., Brutti, S. & Younesi, R., 7 Feb 2019, In : ChemElectroChem. Early View

    Research output: Contribution to journalArticle

  2. Enhanced cycling performance of magnesium doped lithium cobalt phosphate

    Kim, E. J., Miller, D., Irvine, J. T. S. & Armstrong, A. R., 26 Sep 2019, In : ChemElectroChem. 6, 18

    Research output: Contribution to journalArticle

  3. In-situ thermal battery discharge using NiS2 as a cathode material

    Payne, J. L., Percival, J. D., Giagloglou, K., Crouch, C. J., Carins, G. M., Smith, R. I., Comrie, R., Gover, R. K. B. & Irvine, J. T. S., Aug 2017, In : ChemElectroChem. 4, 8, p. 1916-1923 8 p.

    Research output: Contribution to journalArticle

  4. Film quality and electronic properties of a surface-anchored metal-organic framework revealed by using a multi-technique approach

    Liu, J., Paradinas, M., Heinke, L., Buck, M., Ocal, C., Mugnaini, V. & Wöll, C., May 2016, In : ChemElectroChem. 3, 5, p. 713-718 6 p.

    Research output: Contribution to journalArticle

ID: 251097808