Skip to content

Research at St Andrews

Combining individual animal movement and ancillary biotelemetry data to investigate population-level activity budgets

Research output: Contribution to journalArticle


Open Access permissions



Recent technological advances have permitted the collection of detailed animal location and ancillary biotelemetry data that facilitate inference about animal movement and associated behaviors. However, these rich sources of individual information, location, and biotelemetry data, are typically analyzed independently, with population-level inferences remaining largely post hoc. We describe a hierarchical modeling approach, which is able to integrate location and ancillary biotelemetry (e.g., physiological or accelerometer) data from many individuals. We can thus obtain robust estimates of (1) population-level movement parameters and (2) activity budgets for a set of behaviors among which animals transition as they respond to changes in their internal and external environment. Measurement error and missing data are easily accommodated using a state-space formulation of the proposed hierarchical model. Using Bayesian analysis methods, we demonstrate our modeling approach with location and dive activity data from 17 harbor seals (Phoca vitulina) in the United Kingdom. Based jointly on movement and diving activity, we identified three distinct movement behavior states: resting, foraging, and transit, and estimated population-level activity budgets to these three states. Because harbor seals are known to dive for both foraging and transit (but not usually for resting), we compared these results to a similar population level analysis utilizing only location data. We found that a large proportion of time steps were mischaracterized when behavior states were inferred from horizontal trajectory alone, with 33% of time steps exhibiting a majority of dive activity assigned to the resting state. Only 1% of these time steps were assigned to resting when inferred from both trajectory and dive activity data using our integrated modeling approach. There is mounting evidence of the potential perils of inferring animal behavior based on trajectory alone, but there fortunately now exist many flexible analytical techniques for extracting more out of the increasing wealth of information afforded by recent advances in biologging technology.


Original languageEnglish
Pages (from-to)838-849
Number of pages12
Issue number4
Publication statusPublished - 1 Apr 2013

    Research areas

  • Animal location data, Movement model, State-space model, Switching behavior, Telemetry

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Post-disturbance haulout behaviour of harbour seals

    Paterson, W. D., Russell, D. J. F., Wu, G-M., McConnell, B., Currie, J. I., McCafferty, D. J. & Thompson, D., 6 Sep 2019, In : Aquatic Conservation: Marine and Freshwater Ecosystems. 29, S1, p. 144-156 13 p.

    Research output: Contribution to journalArticle

  2. Modelling the population size and dynamics of the British grey seal

    Thomas, L., Russell, D. JF., Duck, C. D., Morris, C., Lonergan, M. E., Empacher, F., Thompson, D. & Harwood, J., 6 Sep 2019, In : Aquatic Conservation: Marine and Freshwater Ecosystems. 29, S1, p. 6-23

    Research output: Contribution to journalArticle

  3. Effects of impulsive noise on marine mammals: investigating range-dependent risk

    Hastie, G., Merchant, N., Goetz, T., Russell, D. J. F., Thompson, P. & Janik, V. M., Jul 2019, In : Ecological Applications. 29, 5, 10 p., e01906.

    Research output: Contribution to journalArticle

Related by journal

  1. Ecology (Journal)

    Monique Lea MacKenzie (Editor)
    2008 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

Related by journal

  1. A silent orchestra: convergent song loss in Hawaiian crickets is repeated, morphologically varied, and widespread

    Rayner, J., Aldridge, S., Montealegre-Z, F. & Bailey, N. W., 29 Apr 2019, In : Ecology. Early View, 4 p., e02694.

    Research output: Contribution to journalArticle

  2. Dominant tree species drive beta diversity patterns in western Amazonia

    Draper, F. C., Asner, G. P., Honorio Coronado, E. N., Baker, T. R., García-Villacorta, R., Pitman, N. C. A., Fine, P. V. A., Phillips, O. L., Zárate Gómez, R., Amasifuén Guerra, C. A., Flores Arévalo, M., Vásquez Martínez, R., Brienen, R. J. W., Monteagudo-Mendoza, A., Torres Montenegro, L. A., Valderrama Sandoval, E., Roucoux, K. H., Ramírez Arévalo, F. R., Mesones Acuy, Í., Del Aguila Pasquel, J. & 5 others, Tagle Casapia, X., Flores Llampazo, G., Corrales Medina, M., Reyna Huaymacari, J. & Baraloto, C., 1 Apr 2019, In : Ecology. 100, 4, e02636.

    Research output: Contribution to journalArticle

  3. Negligible effect of competition on coral colony growth

    Alvarez-Noriega, M., Baird, A. H., Dornelas, M., Madin, J. S. & Connolly, S. R., Jun 2018, In : Ecology. 99, 6, p. 1347-1356 10 p.

    Research output: Contribution to journalArticle

  4. Estimates of local biodiversity change over time stand up to scrutiny

    Vellend, M., Dornelas, M., Baeten, L., Beauséjour, R., Brown, C. D., De Frenne, P., Elmendorf, S. C., Gotelli, N. J., Moyes, F., Myers-Smith, I. H., Magurran, A. E., McGill, B. J., Shimadzu, H. & Sievers, C., Feb 2017, In : Ecology. 98, 2, p. 583-590 8 p.

    Research output: Contribution to journalArticle

  5. Estimation and simulation of foraging trips in land-based marine predators

    Michelot, T., Langrock, R., Bestley, S., Jonsen, I. D., Photopoulou, T. & Patterson, T. A., Jul 2017, In : Ecology. 98, 7, p. 1932-1944 13 p.

    Research output: Contribution to journalArticle

ID: 28449814