Skip to content

Research at St Andrews

Comparison of variational balance models for the rotating shallow water equations

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Abstract

We present an extensive numerical comparison of a family of balance models appropriate to the semi-geostrophic limit of the rotating shallow water equations, and derived by variational asymptotics in Oliver (J. Fluid Mech., vol. 551, 2006, pp. 197–234) for small Rossby numbers Ro. This family of generalized large-scale semi-geostrophic (GLSG) models contains the L1-model introduced by Simon (J. Fluid. Mech., vol. 132, pp. 431-444) as a special case. We use these models to produce balanced initial states for the full shallow water equations. We then numerically investigate how well these models capture the dynamics of an initially balanced shallow water flow. It is shown that, whereas the L1-member of the GLSG family is able to reproduce the balanced dynamics of the full shallow water equations on time scales of O(1/Ro) very well, all other members develop significant unphysical high wave number contributions in the ageostrophic vorticity which spoil the dynamics.
Close

Details

Original languageEnglish
Pages (from-to)689-716
Number of pages28
JournalJournal of Fluid Mechanics
Volume822
DOIs
StatePublished - Jul 2017

    Research areas

  • Rotating flows, Shallow water flows, Variational methods

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Vortex scaling ranges in two-dimensional turbulence

    Burgess, B. H., Dritschel, D. G. & Scott, R. K. 27 Jul 2017 In : Physics of Fluids. 29, 11, 12 p., 111104

    Research output: Contribution to journalArticle

  2. Interaction between a quasi-geostrophic buoyancy filament and a heton

    Reinaud, J. N., Carton, X. & Dritschel, D. G. Sep 2017 In : Fluids. 2, 3, 20 p., 37

    Research output: Contribution to journalArticle

  3. Interaction between a surface quasi-geostrophic buoyancy anomaly jet and internal vortices

    Reinaud, J. N., Dritschel, D. G. & Carton, X. Aug 2017 In : Physics of Fluids. 29, 8, 16 p., 086603

    Research output: Contribution to journalArticle

  4. On the energetics of a two-layer baroclinic flow

    Jougla, T. & Dritschel, D. G. Apr 2017 In : Journal of Fluid Mechanics. 816, p. 586-618 33 p.

    Research output: Contribution to journalArticle

  5. The characteristics of billows generated by internal solitary waves

    Carr, M., Franklin, J., King, S. E., Davies, P., Grue, J. & Dritschel, D. G. Feb 2017 In : Journal of Fluid Mechanics. 812, p. 541-577

    Research output: Contribution to journalArticle

Related by journal

  1. On the energetics of a two-layer baroclinic flow

    Jougla, T. & Dritschel, D. G. Apr 2017 In : Journal of Fluid Mechanics. 816, p. 586-618 33 p.

    Research output: Contribution to journalArticle

  2. The characteristics of billows generated by internal solitary waves

    Carr, M., Franklin, J., King, S. E., Davies, P., Grue, J. & Dritschel, D. G. Feb 2017 In : Journal of Fluid Mechanics. 812, p. 541-577

    Research output: Contribution to journalArticle

  3. Scaling theory for vortices in the two-dimensional inverse energy cascade

    Burgess, B. H. & Scott, R. K. Jan 2017 In : Journal of Fluid Mechanics. 811, p. 742-756 15 p.

    Research output: Contribution to journalArticle

  4. Balanced solutions for an ellipsoidal vortex in a rotating stratified flow

    Mckiver, W. J. & Dritschel, D. G. Sep 2016 In : Journal of Fluid Mechanics. 802, p. 333-358 26 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Journal of Fluid Mechanics (Journal)

    Dritschel, D. G. (Editor)
    2005 → …

    Activity: Publication peer-review and editorial workEditor of research journal

ID: 250361143