Skip to content

Research at St Andrews

Computational approaches and analysis for a spatio-structural-temporal invasive carcinoma model

Research output: Contribution to journalArticle

Author(s)

Arran Hodgkinson, Mark Andrew Joseph Chaplain, Pia Domschke, Dumitru Trucu

School/Research organisations

Abstract

Spatio-temporal models have long been used to describe biological systems of cancer, but it has not been until very recently that increased attention has been paid to structural dynamics of the interaction between cancer populations and the molecular mechanisms associated with local invasion. One system that is of particular interest is that of the urokinase plasminogen activator (uPA) wherein uPA binds uPA receptors on the cancer cell surface, allowing plasminogen to be cleaved into plasmin, which degrades the extracellular matrix and this way leads to enhanced cancer cell migration. In this paper, we develop a novel numerical approach and associated analysis for spatio-structuro-temporal modelling of the uPA system for up to two-spatial and two-structural dimensions. This is accompanied by analytical exploration of the numerical techniques used in simulating this system, with special consideration being given to the proof of stability within numerical regimes encapsulating a central differences approach to approximating numerical gradients. The stability analysis performed here reveals instabilities induced by the coupling of the structural binding and proliferative processes. The numerical results expound how the uPA system aids the tumour in invading the local stroma, whilst the inhibitor to this system may impede this behaviour and encourage a more sporadic pattern of invasion.
Close

Details

Original languageEnglish
Pages (from-to)701-737
JournalBulletin of Mathematical Biology
Volume80
Issue number4
Early online date2 Mar 2018
DOIs
Publication statusPublished - Apr 2018

    Research areas

  • Cancer invasion, Structured cell population dynamics, Computational modelling

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

Related by journal

  1. A mathematical framework for modelling the metastatic spread of cancer

    Franssen, L. C., Lorenzi, T., Burgess, A. & Chaplain, M. A. J., 22 Mar 2019, In : Bulletin of Mathematical Biology. First Online, 46 p.

    Research output: Contribution to journalArticle

  2. Computational modelling of cancer development and growth: modelling at multiple scales and multiscale modelling

    Szymanska, Z., Cytowski, M., Mitchell, E., Macnamara, C. K. & Chaplain, M. A. J., May 2018, In : Bulletin of Mathematical Biology. 80, 5, p. 1366-1403 38 p.

    Research output: Contribution to journalArticle

  3. Stability, convergence, and sensitivity analysis of the FBLM and the corresponding FEM

    Sfakianakis, N. & Brunk, A., Nov 2018, In : Bulletin of Mathematical Biology. 80, 11, p. 2789-2827 39 p.

    Research output: Contribution to journalArticle

ID: 252047094

Top