Skip to content

Research at St Andrews

Computing transformation semigroups

Research output: Contribution to journalArticlepeer-review

DOI

Abstract

This paper describes algorithms for computing the structure of finite transformation semigroups. The algorithms depend crucially on a now data structure for an R-class in terms of a group and an action. They provide for local computations, concerning a single R-class, without computing the whole semigroup, as well as for computing the global structure of the semigroup. The algorithms have been implemented in the share package MONOID within the GAP system for computational algebra. (C) 2002 Academic Press.

Close

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. On convex permutations

    Albert, M. H., Linton, S. A., Ruskuc, N., Vatter, V. & Waton, S., May 2011, In: Discrete Mathematics. 311, 8-9, p. 715-722

    Research output: Contribution to journalArticlepeer-review

  2. On the permutational power of token passing networks

    Albert, M. H., Linton, S. A. & Ruskuc, N., Oct 2010, Permutation Patterns: St Andrews 2007. Linton, S., Ruskuc, N. & Vatter, V. (eds.). Cambridge: Cambridge University Press, p. 317-338 (LMS Lecture Notes).

    Research output: Chapter in Book/Report/Conference proceedingChapter

  3. Permutation Patterns 2007: St Andrews

    Linton, S., Ruskuc, N. & Vatter, V., 2010, Cambridge University Press. 345 p.

    Research output: Book/ReportBook

  4. Cancellative and Malcev presentations for finite Rees index subsemigroups and extensions

    Cain, A. J., Robertson, E. F. & Ruskuc, N., Feb 2008, In: Journal of the Australian Mathematical Society. 84, 1, p. 39-61 23 p.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Lifting tropical bitangents

    Len, Y. & Markwig, H., Jan 2020, In: Journal of Symbolic Computation. 96, p. 122-152

    Research output: Contribution to journalArticlepeer-review

  2. Polynomial-time proofs that groups are hyperbolic

    Holt, D., Linton, S., Neunhoeffer, M., Parker, R., Pfeiffer, M. & Roney-Dougal, C. M., May 2021, In: Journal of Symbolic Computation. 104, p. 419-475

    Research output: Contribution to journalArticlepeer-review

  3. Computing finite semigroups

    East, J., Egri-Nagy, A., Mitchell, J. D. & Péresse, Y., May 2019, In: Journal of Symbolic Computation. 92, p. 110-155 46 p.

    Research output: Contribution to journalArticlepeer-review

  4. New refiners for permutation group search

    Jefferson, C., Pfeiffer, M. & Waldecker, R., May 2019, In: Journal of Symbolic Computation. 92, p. 70-92 23 p.

    Research output: Contribution to journalArticlepeer-review

  5. Integrality and arithmeticity of solvable linear groups

    Detinko, A., Flannery, D. & de Graaf, W., 2015, In: Journal of Symbolic Computation. 68, p. 138–145

    Research output: Contribution to journalArticlepeer-review

ID: 179746

Top