Skip to content

Research at St Andrews

Conductivity Behavior of Composites in the La0.6Sr0.4CoO3±δ - CeO2 System: Function of Connectivity and Interfacial Interactions

Research output: Contribution to journalArticle

DOI

Author(s)

Elena Konysheva, Ross Alexander Blackley, John Thomas Sirr Irvine

School/Research organisations

Abstract

The electrical properties of a series of composites formed by reactive sintering have been investigated. Six composite samples with the same composition 43 mol % La0.6Sr0.4CoO3 +/-delta. 57 mol % CeO2 (LSCC57) were fabricated through mixing of the initial LSC and CeO2 followed by milling of the mixture for different periods of time (up to 261 h) and fired at 1350 C. According to X-ray diffraction (XRD), at room temperature all the LSCC57 composites are composed of the modified perovskite with rhombohedrally distorted perovskite structure (R (3) over barc, no. 167) and modified ceria with fluorite structure (Fm (3) over barm, no. 225). The modification of the initial phases takes place because of cross-dissolution of La, Sr, and Co from the initial LSC into the fluorite structure and Ce from the CeO2 into the perovskite structure. Depending upon fabrication history these composites showed unusual conductivity behavior with strong reversible hysteresis between heating and cooling stages. The transport properties of the LSCC57 composites are determined by several factors: (i) good three-dimensional (3D) connectivity between grains of the most conductive phase (modified perovskite); (ii) recombination of holes (from the modified perovskite) and electrons (from the modified ceria) at phase interfaces could decrease electronic conductivity in the composite materials; (iii) existence of epitaxial coherence between oxygen sublattices at the {modified perovskite/modified ceria} interface could facilitate oxygen transport across the phase interfaces; and (iv) mechanochemical interactions during fabrication (mixing followed by milling) and during high temperature treatment. The transport properties of nanoscale phases at interfacial regions are thought to have strong influence on the conductivity of the LSCC57 composites, in particular, where the grains of the modified perovskite do not form a robust 3D continuous network through the composite material and lead to the appearance of the conductivity hysteresis with the temperature variation.

Close

Details

Original languageEnglish
Pages (from-to)4700-4711
Number of pages12
JournalChemistry of Materials
Volume22
Issue number16
DOIs
Publication statusPublished - 24 Aug 2010

    Research areas

  • PEROVSKITE-TYPE OXIDES, THERMOCHEMICAL STABILITY, ELECTRICAL-CONDUCTIVITY, SOLID ELECTROLYTES, CRYSTAL-STRUCTURE, ION-TRANSPORT, DOPED CEO2, FUEL-CELLS, PHASE, ELECTRODES

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. An FeNbO4-based oxide anode for a solid oxide fuel cell (SOFC)

    Liu, X., Xie, D., Irvine, J. T. S., Ni, J. & Ni, C., 11 Jan 2020, In : Electrochimica Acta. In press, 135692.

    Research output: Contribution to journalArticle

  2. A B-site doped perovskite ferrate for efficient anode of a solid oxide fuel cell with in situ metal exsolution

    Ni, C., Zeng, Q., He, D., Peng, L., Xie, D., Irvine, J. T. S., Duan, S. & Ni, J., 21 Dec 2019, In : Journal of Materials Chemistry A. 7, 47, p. 26944-26953 10 p.

    Research output: Contribution to journalArticle

  3. Lattice strain-enhanced exsolution of nanoparticles in thin films

    Han, H., Park, J., Nam, S. Y., Choi, G. M., Parkin, S. S. P., Jang, H. M. & Irvine, J. T. S., 1 Dec 2019, In : Nature Communications. 10, 8 p., 1471.

    Research output: Contribution to journalArticle

  4. Hexagonal perovskite related oxide ion conductor Ba3NbMoO8.5: phase transition, temperature evolution of the local structure and properties

    Chambers, M. S., McCombie, K. S., Auckett, J. E., McLaughlin, A. C., Irvine, J. T. S., Chater, P. A., Evans, J. S. O. & Evans, I. R., 28 Nov 2019, In : Journal of Materials Chemistry. 7, 44, p. 25503-25510 8 p.

    Research output: Contribution to journalArticle

  5. Oxygen storage capacity and thermal stability of brownmillerite-type Ca2(Al1-xGax)MnO5+δ oxides

    Huang, X., Ni, C. & Irvine, J. T. S., 25 Nov 2019, In : Journal of Alloys and Compounds. 810, 151865.

    Research output: Contribution to journalArticle

Related by journal

  1. Large crystalline domains and enhanced exciton diffusion length enable efficient organic solar cells

    Zhang, Y., Sajjad, M. T., Blaszczyk, O., Parnell, A. J., Ruseckas, A., Serrano, L. A., Cooke, G. & Samuel, I. D. W., 10 Sep 2019, In : Chemistry of Materials. 31, 17, p. 6548-6557

    Research output: Contribution to journalArticle

  2. n-type doping of organic semiconductors: immobilization via covalent anchoring

    Reiser, P., Benneckendorf, F. S., Barf, M-M., Müller, L., Bäuerle, R., Hillebrandt, S., Beck, S., Lovrincic, R., Mankel, E., Freudenberg, J., Jänsch, D., Kowalsky, W., Pucci, A., Jaegermann, W., Bunz, U. H. F. & Müllen, K., 11 Jun 2019, In : Chemistry of Materials. 31, 11, p. 4213-4221 9 p.

    Research output: Contribution to journalArticle

  3. A reinvestigation of Na2Fe2(C2O4)2H2O: an iron-based positive electrode for secondary batteries

    Yao, W., Sougrati, M-T., Hoang, K., Hui, J., Lightfoot, P. & Armstrong, A. R., 14 Nov 2017, In : Chemistry of Materials. 29, 21, p. 9095-9101

    Research output: Contribution to journalArticle

  4. Assembly-diassembly-organization-reassembly synthesis of zeolites based on cfi-type layers

    Firth, D. S., Morris, S. A., Wheatley, P. S., Russell, S. E., Slawin, A. M. Z., Dawson, D. M., Mayoral, A., Opanasenko, M., Položij, M., Čejka, J., Nachtigall, P. & Morris, R. E., 11 Jul 2017, In : Chemistry of Materials. 29, 13, p. 5605-5611

    Research output: Contribution to journalArticle

  5. Controlling of structural ordering and rigidity of β-SiAlON:Eu through chemical cosubstitution to approach narrow-band-emission for light-emitting diodes application

    Zhang, X., Fang, M-H., Tsai, Y-T., Lazarowska, A., Mahlik, S., Lesniewski, T., Grinberg, M., Pang, W. K., Pan, F., Liang, C., Zhou, W., Wang, J., Lee, J-F., Cheng, B-M., Hung, T-L., Chen, Y-Y. & Liu, R-S., 22 Aug 2017, In : Chemistry of Materials. 29, 16, p. 6781-6792

    Research output: Contribution to journalArticle

Related by journal

  1. Chemistry of Materials (Journal)

    Finlay Morrison (Reviewer)
    2009 → …

    Activity: Publication peer-review and editorial work typesPeer review of manuscripts

ID: 6326291

Top