Skip to content

Research at St Andrews

Conductivity, catalytic property and electrochemical performance of a new perovskite-type SOFC anode material

Research output: Other contribution


School/Research organisations


A perovskite related material, La0.75Sr0.25Cr0.5Fe0.5O3-delta (LSCF), has been synthesised and examined as a potential anode material for solid oxide fuel cells (SOFC). The material exhibits an overall orthorombic structure with a = 5.4926 +/- 0.0005 Angstrom, b = 5.5339 +/- 0.0004 Angstrom, c = 7.7646 +/- 0.0008 Angstrom. V = 236.01 +/- 0.05 Angstrom(3) according to the X-ray data. It is chemically stable under SOFC anode conditions. The conductivity of LSCF at 900degreesC is 14.3 and 0.21 S/cm respectively in air and 5% H-2. An 11% methane conversion was observed at 900degreesC when the steam to methane ratio is 1:1. A methane conversion of 68% with CO2-selectivity of 99% is achieved at 900degreesC when equal molar of CH4 and O-2 were introduced into the reactor. The anode polarisation resistance in wet 5% H-2/Ar and wet H-2 are about 1.79 Omegacm(2) and 1.15 Omegacm(2) respectively at 850degreesC. A fuel cell with a maximum current density of 640 mA/cm(2) was achieved in wet H-2 at 900degreesC. LSCF itself is not an ideal SOFC anode material although it is redox stable in reducing atmosphere at high temperatures and exhibits good catalytic effects for methane-reforming.



Original languageEnglish
Publication statusPublished - 2003

    Research areas


Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. An FeNbO4-based oxide anode for a solid oxide fuel cell (SOFC)

    Liu, X., Xie, D., Irvine, J. T. S., Ni, J. & Ni, C., 11 Jan 2020, In : Electrochimica Acta. In press, 135692.

    Research output: Contribution to journalArticle

  2. A B-site doped perovskite ferrate for efficient anode of a solid oxide fuel cell with in situ metal exsolution

    Ni, C., Zeng, Q., He, D., Peng, L., Xie, D., Irvine, J. T. S., Duan, S. & Ni, J., 21 Dec 2019, In : Journal of Materials Chemistry A. 7, 47, p. 26944-26953 10 p.

    Research output: Contribution to journalArticle

  3. Lattice strain-enhanced exsolution of nanoparticles in thin films

    Han, H., Park, J., Nam, S. Y., Choi, G. M., Parkin, S. S. P., Jang, H. M. & Irvine, J. T. S., 1 Dec 2019, In : Nature Communications. 10, 8 p., 1471.

    Research output: Contribution to journalArticle

  4. Hexagonal perovskite related oxide ion conductor Ba3NbMoO8.5: phase transition, temperature evolution of the local structure and properties

    Chambers, M. S., McCombie, K. S., Auckett, J. E., McLaughlin, A. C., Irvine, J. T. S., Chater, P. A., Evans, J. S. O. & Evans, I. R., 28 Nov 2019, In : Journal of Materials Chemistry. 7, 44, p. 25503-25510 8 p.

    Research output: Contribution to journalArticle

  5. Oxygen storage capacity and thermal stability of brownmillerite-type Ca2(Al1-xGax)MnO5+δ oxides

    Huang, X., Ni, C. & Irvine, J. T. S., 25 Nov 2019, In : Journal of Alloys and Compounds. 810, 151865.

    Research output: Contribution to journalArticle

ID: 279372