Skip to content

Research at St Andrews

Consistency and identifiability of the polymorphism-aware phylogenetic models

Research output: Contribution to journalArticle

Author(s)

Rui Borges, Carolin Kosiol

School/Research organisations

Abstract

Polymorphism-aware phylogenetic models (PoMo) constitute an alternative approach for species tree estimation from genome-wide data. PoMo builds on the standard substitution models of DNA evolution but expands the classic alphabet of the four nucleotide bases to include polymorphic states. By doing so, PoMo accounts for ancestral and current intra-population variation, while also accommodating population-level processes ruling the substitution process (e.g. genetic drift, mutations, allelic selection). PoMo has shown to be a valuable tool in several phylogenetic applications but a proof of statistical consistency (and identifiability, a necessary condition for consistency) is lacking. Here, we prove that PoMo is identifiable and, using this result, we further show that the maximum a posteriori (MAP) tree estimator of PoMo is a consistent estimator of the species tree. We complement our theoretical results with a simulated data set mimicking the diversity observed in natural populations exhibiting incomplete lineage sorting. We implemented PoMo in a Bayesian framework and show that the MAP tree easily recovers the true tree for typical numbers of sites that are sampled in genome-wide analyses.
Close

Details

Original languageEnglish
Article number110074
Pages (from-to)1-6
Number of pages6
JournalJournal of Theoretical Biology
Volume486
Early online date8 Nov 2019
DOIs
Publication statusE-pub ahead of print - 8 Nov 2019

    Research areas

  • Polymorphism-aware models, Phylogenetics, Species tree estimation, Consistency, Identifiability

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Quantifying GC-biased gene conversion in great ape genomes using polymorphism-aware models

    Borges, R., Szöllősi, G. & Kosiol, C., 1 Aug 2019, In : Genetics. 212, 4, p. 1321-1336

    Research output: Contribution to journalArticle

  2. Selection acting on genomes

    Kosiol, C. & Anisimova, M., 6 Jul 2019, Evolutionary genomics: statistical and computational methods. Anisimova, M. (ed.). New York: Humana Press Inc., p. 373-397 25 p. (Methods in Molecular Biology; vol. 1910).

    Research output: Chapter in Book/Report/Conference proceedingChapter

  3. Polymorphism-aware species trees with advanced mutation models, bootstrap and rate heterogeneity

    Schrempf, D., Minh, B. Q., von Haeseler, A. & Kosiol, C., Jun 2019, In : Molecular Biology and Evolution. 36, 6, p. 1294-1301 8 p.

    Research output: Contribution to journalArticle

  4. The comparative genomics and complex population history of Papio baboons

    Rogers, J., Raveendran, M., Harris, R. A., Mailund, T., Leppälä, K., Athanasiadis, G., Schierup, M. H., Cheng, J., Munch, K., Walker, J. A., Konkel, M. K., Jordan, V., Steely, C. J., Beckstrom, T. O., Bergey, C., Burrell, A., Schrempf, D., Noll, A., Kothe, M., Kopp, G. H. & 22 others, Liu, Y., Murali, S., Billis, K., Martin, F. J., Muffato, M., Cox, L., Else, J., Disotell, T., Muzny, D. M., Phillips-conroy, J., Aken, B., Eichler, E. E., Marques-bonet, T., Kosiol, C., Batzer, M. A., Hahn, M. W., Tung, J., Zinner, D., Roos, C., Jolly, C. J., Gibbs, R. A. & Worley, K. C., 30 Jan 2019, In : Science Advances. 5, 1, 15 p., eaau6947.

    Research output: Contribution to journalArticle

  5. Inference in population genetics using forward and backward, discrete and continuous time processes

    Bergman, J., Schrempf, D., Kosiol, C. & Vogl, C., 14 Feb 2018, In : Journal of Theoretical Biology. 439, p. 166-180 15 p.

    Research output: Contribution to journalArticle

Related by journal

  1. A theory for investment across defences triggered at different stages of a predator-prey encounter

    Wang, L., Ruxton, G. D., Cornell, S. J., Speed, M. P. & Broom, M., 21 Jul 2019, In : Journal of Theoretical Biology. 473, p. 9-19 11 p.

    Research output: Contribution to journalArticle

  2. Spatial-stochastic modelling of synthetic gene regulatory networks

    Macnamara, C. K., Mitchell, E. & Chaplain, M. A. J., 10 Feb 2019, In : Journal of Theoretical Biology. In press

    Research output: Contribution to journalArticle

  3. Approximate Bayesian computation reveals the importance of repeated measurements for parameterising cell-based models of growing tissues

    Kursawe, J., Baker, R. E. & Fletcher, A. G., 14 Apr 2018, In : Journal of Theoretical Biology. 443, p. 66-81 16 p.

    Research output: Contribution to journalArticle

ID: 263615679

Top