Skip to content

Research at St Andrews

Constraining the evolution of Neogene ocean carbonate chemistry using the boron isotope pH proxy

Research output: Contribution to journalArticlepeer-review

Author(s)

S. M. Sosdian, R. Greenop, M. P. Hain, G. L. Foster, P. N. Pearson, C. H. Lear

School/Research organisations

Abstract

Over the course of the Neogene, the Earth underwent profound climatic shifts from the sustained warmth of the middle Miocene to the development of Plio-Pleistocene glacial–interglacial cycles. Major perturbations in the global carbon cycle have occurred alongside these shifts, however the lack of long-term carbonate system reconstructions currently limits our understanding of the link between changes in CO2, carbon cycling, and climate over this time interval. Here we reconstruct continuous surface ocean pH, CO2, and surface ocean aragonite saturation state using boron isotopes from the planktonic foraminifer Trilobatus trilobus and we perform a sensitivity analysis of the key variables in our calculations (e.g. δ11Bsw, [Ca]sw, CCD). We show that the choice of δ11Bsw influences both seawater pH and CO2 while [Ca]sw reconstructed dissolved inorganic carbon exerts a significant influence only on CO2. Over the last 22 Myr, the lowest pH levels occurred in the Middle Miocene Climate Optimum (MMCO; 17–14 Myr ago) reaching ∼7.6 ± 0.1 units in all our scenarios. The extended warmth of the MMCO corresponds to mean CO2 and aragonite saturation state levels of 470–630 ppm and 2.7–3.5, respectively. Despite a general correspondence between our CO2 record and climate, all CO2 scenarios show a peak at ∼9 Ma not matched by corresponding changes in climate reconstructions. This may suggest decoupling (i.e. significant CO2 change without a discernible climate response) for a limited interval in the Late Miocene (11.6–8.5 Ma), although further refinement of our understanding of the temporal evolution of the boron isotopic composition of seawater is necessary to fully evaluate the nature of the relationship between CO2 and climate. Nonetheless, from our long-term view it is clear that low-latitude open ocean marine ecosystems are unlikely to have experienced sustained surface pH and saturation levels below 7.7 and 1.7, respectively, during the past 14 million years (66% CI).
Close

Details

Original languageEnglish
Pages (from-to)362-376
Number of pages15
JournalEarth and Planetary Science Letters
Volume498
Early online date20 Jul 2018
DOIs
Publication statusPublished - 15 Sep 2018

    Research areas

  • Boron isotopes, Foraminifera, Carbonate system, Neogene, Miocene

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by journal

  1. Earth and Planetary Science Letters (Journal)

    Chris Hawkesworth (Member of editorial board)

    19851993

    Activity: Publication peer-review and editorial work typesEditor of research journal

Related by journal

  1. Controls on boron isotopes in a cold-water coral and the cost of resilience to ocean acidification

    Gagnon, A., Gothmann, A., Branson, O., Rae, J. W. B. & Stewart, J., 15 Jan 2021, In: Earth and Planetary Science Letters. 554, 10 p., 116662.

    Research output: Contribution to journalArticlepeer-review

  2. Stirred not shaken; critical evaluation of a proposed Archean meteorite impact in West Greenland

    Yakymchuk, C., Kirkland, C. L., Cavosie, A. J., Szilas, K., Hollis, J., Gardiner, N. J., Waterton, P., Steenfelt, A. & Martin, L., 1 Mar 2021, In: Earth and Planetary Science Letters. 557, 116730.

    Research output: Contribution to journalArticlepeer-review

  3. The phases of the Moon: Modelling crystallisation of the lunar magma ocean through equilibrium thermodynamics

    Johnson, T. E., Morrissey, L. J., Nemchin, A. A., Gardiner, N. J. & Snape, J. F., 15 Feb 2021, In: Earth and Planetary Science Letters. 556, 116721.

    Research output: Contribution to journalArticlepeer-review

  4. Theoretical versus empirical secular change in zircon composition

    Kirkland, C. L., Yakymchuk, C., Olierook, H. K. H., Hartnady, M. I. H., Gardiner, N. J., Moyen, J-F., Hugh Smithies, R., Szilas, K. & Johnson, T. E., 15 Jan 2021, In: Earth and Planetary Science Letters. 554, 12 p., 116660.

    Research output: Contribution to journalArticlepeer-review

  5. Atmospheric S and lithospheric Pb in sulphides from the 2.06 Ga Phalaborwa phoscorite-carbonatite Complex, South Africa

    Bolhar, R., Whitehouse, M. J., Milani, L., Magalhães, N., Golding, S. D., Bybee, G., LeBras, L. & Bekker, A., 15 Jan 2020, In: Earth and Planetary Science Letters. 530, 115939.

    Research output: Contribution to journalArticlepeer-review

ID: 255029597

Top