Skip to content

Research at St Andrews

Continental growth seen through the sedimentary record

Research output: Contribution to journalArticle

Standard

Continental growth seen through the sedimentary record. / Dhuime, Bruno; Hawkesworth, Chris J.; Delavault, Hélène; Cawood, Peter A.

In: Sedimentary Geology, Vol. 357, 15.07.2017, p. 16-32.

Research output: Contribution to journalArticle

Harvard

Dhuime, B, Hawkesworth, CJ, Delavault, H & Cawood, PA 2017, 'Continental growth seen through the sedimentary record' Sedimentary Geology, vol. 357, pp. 16-32. https://doi.org/10.1016/j.sedgeo.2017.06.001

APA

Dhuime, B., Hawkesworth, C. J., Delavault, H., & Cawood, P. A. (2017). Continental growth seen through the sedimentary record. Sedimentary Geology, 357, 16-32. https://doi.org/10.1016/j.sedgeo.2017.06.001

Vancouver

Dhuime B, Hawkesworth CJ, Delavault H, Cawood PA. Continental growth seen through the sedimentary record. Sedimentary Geology. 2017 Jul 15;357:16-32. https://doi.org/10.1016/j.sedgeo.2017.06.001

Author

Dhuime, Bruno ; Hawkesworth, Chris J. ; Delavault, Hélène ; Cawood, Peter A. / Continental growth seen through the sedimentary record. In: Sedimentary Geology. 2017 ; Vol. 357. pp. 16-32.

Bibtex - Download

@article{313a3f1fcaf6466293ca975298fa7f96,
title = "Continental growth seen through the sedimentary record",
abstract = "Sedimentary rocks and detrital minerals sample large areas of the continental crust, and they are increasingly seen as a reliable archive for its global evolution. This study presents two approaches to model the growth of the continental crust through the sedimentary archive. The first builds on the variations in U-Pb, Hf and O isotopes in global databases of detrital zircons. We show that uncertainty in the Hf isotope composition of the mantle reservoir from which new crust separated, in the 176Lu/177Hf ratio of that new crust, and in the contribution in the databases of zircons that experienced ancient Pb loss(es), adds some uncertainty to the individual Hf model ages, but not to the overall shape of the calculated continental growth curves. The second approach is based on the variation of Nd isotopes in 645 worldwide fine-grained continental sedimentary rocks with different deposition ages, which requires a correction of the bias induced by preferential erosion of younger rocks through an erosion parameter referred to as K. This dimensionless parameter relates the proportions of younger to older source rocks in the sediment, to the proportions of younger to older source rocks present in the crust from which the sediment derived. We suggest that a Hadean/Archean value of K = 1 (i.e., no preferential erosion), and that post-Archaean values of K = 4–6, may be reasonable for the global Earth system. Models built on the detrital zircon and the fine-grained sediment records independently suggest that at least 65{\%} of the present volume of continental crust was established by 3 Ga. The continental crust has been generated continuously, but with a marked decrease in the growth rate at ~ 3 Ga. The period from > 4 Ga to ~ 3 Ga is characterised by relatively high net rates of continental growth (2.9–3.4 km3 yr−1 on average), which are similar to the rates at which new crust is generated (and destroyed) at the present time. Net growth rates are much lower since 3 Ga (0.6–0.9 km3 yr−1 on average), which can be attributed to higher rates of destruction of continental crust. The change in slope in the continental growth curve at ~ 3 Ga is taken to indicate a global change in the way bulk crust was generated and preserved, and this change has been linked to the onset of subduction-driven plate tectonics. At least 100{\%} of the present volume of the continental crust has been destroyed and recycled back into the mantle since ~ 3 Ga, and this time marks a transition in the average composition of new continental crust. Continental crust generated before 3 Ga was on average mafic, dense, relatively thin (< 20 km) and therefore different from the calc-alkaline andesitic crust that dominates the continental record today. Continental crust that formed after 3 Ga gradually became more intermediate in composition, buoyant and thicker. The increase in crustal thickness is accompanied by increasing rates of crustal reworking and increasing input of sediment to the ocean. These changes may have been accommodated by a change in lithospheric strength at around 3 Ga, as it became strong enough to support high-relief crust. This time period therefore indicates when significant volumes of continental crust started to become emergent and were available for erosion and weathering, thus impacting on the composition of the atmosphere and the oceans.",
keywords = "Continental growth, Hadean/Archaean, Plate tectonics, Zircon, Shale, U-Pb/Hf/Nd/O isotopes",
author = "Bruno Dhuime and Hawkesworth, {Chris J.} and H{\'e}l{\`e}ne Delavault and Cawood, {Peter A.}",
note = "This work was supported by the Natural Environment Research Council [NERC grant NE/K008862/1], the Leverhulme Trust [grant RPG-2015–422], and the Australian Research Council [grant FL160100168].",
year = "2017",
month = "7",
day = "15",
doi = "10.1016/j.sedgeo.2017.06.001",
language = "English",
volume = "357",
pages = "16--32",
journal = "Sedimentary Geology",
issn = "0037-0738",
publisher = "Elsevier",

}

RIS (suitable for import to EndNote) - Download

TY - JOUR

T1 - Continental growth seen through the sedimentary record

AU - Dhuime, Bruno

AU - Hawkesworth, Chris J.

AU - Delavault, Hélène

AU - Cawood, Peter A.

N1 - This work was supported by the Natural Environment Research Council [NERC grant NE/K008862/1], the Leverhulme Trust [grant RPG-2015–422], and the Australian Research Council [grant FL160100168].

PY - 2017/7/15

Y1 - 2017/7/15

N2 - Sedimentary rocks and detrital minerals sample large areas of the continental crust, and they are increasingly seen as a reliable archive for its global evolution. This study presents two approaches to model the growth of the continental crust through the sedimentary archive. The first builds on the variations in U-Pb, Hf and O isotopes in global databases of detrital zircons. We show that uncertainty in the Hf isotope composition of the mantle reservoir from which new crust separated, in the 176Lu/177Hf ratio of that new crust, and in the contribution in the databases of zircons that experienced ancient Pb loss(es), adds some uncertainty to the individual Hf model ages, but not to the overall shape of the calculated continental growth curves. The second approach is based on the variation of Nd isotopes in 645 worldwide fine-grained continental sedimentary rocks with different deposition ages, which requires a correction of the bias induced by preferential erosion of younger rocks through an erosion parameter referred to as K. This dimensionless parameter relates the proportions of younger to older source rocks in the sediment, to the proportions of younger to older source rocks present in the crust from which the sediment derived. We suggest that a Hadean/Archean value of K = 1 (i.e., no preferential erosion), and that post-Archaean values of K = 4–6, may be reasonable for the global Earth system. Models built on the detrital zircon and the fine-grained sediment records independently suggest that at least 65% of the present volume of continental crust was established by 3 Ga. The continental crust has been generated continuously, but with a marked decrease in the growth rate at ~ 3 Ga. The period from > 4 Ga to ~ 3 Ga is characterised by relatively high net rates of continental growth (2.9–3.4 km3 yr−1 on average), which are similar to the rates at which new crust is generated (and destroyed) at the present time. Net growth rates are much lower since 3 Ga (0.6–0.9 km3 yr−1 on average), which can be attributed to higher rates of destruction of continental crust. The change in slope in the continental growth curve at ~ 3 Ga is taken to indicate a global change in the way bulk crust was generated and preserved, and this change has been linked to the onset of subduction-driven plate tectonics. At least 100% of the present volume of the continental crust has been destroyed and recycled back into the mantle since ~ 3 Ga, and this time marks a transition in the average composition of new continental crust. Continental crust generated before 3 Ga was on average mafic, dense, relatively thin (< 20 km) and therefore different from the calc-alkaline andesitic crust that dominates the continental record today. Continental crust that formed after 3 Ga gradually became more intermediate in composition, buoyant and thicker. The increase in crustal thickness is accompanied by increasing rates of crustal reworking and increasing input of sediment to the ocean. These changes may have been accommodated by a change in lithospheric strength at around 3 Ga, as it became strong enough to support high-relief crust. This time period therefore indicates when significant volumes of continental crust started to become emergent and were available for erosion and weathering, thus impacting on the composition of the atmosphere and the oceans.

AB - Sedimentary rocks and detrital minerals sample large areas of the continental crust, and they are increasingly seen as a reliable archive for its global evolution. This study presents two approaches to model the growth of the continental crust through the sedimentary archive. The first builds on the variations in U-Pb, Hf and O isotopes in global databases of detrital zircons. We show that uncertainty in the Hf isotope composition of the mantle reservoir from which new crust separated, in the 176Lu/177Hf ratio of that new crust, and in the contribution in the databases of zircons that experienced ancient Pb loss(es), adds some uncertainty to the individual Hf model ages, but not to the overall shape of the calculated continental growth curves. The second approach is based on the variation of Nd isotopes in 645 worldwide fine-grained continental sedimentary rocks with different deposition ages, which requires a correction of the bias induced by preferential erosion of younger rocks through an erosion parameter referred to as K. This dimensionless parameter relates the proportions of younger to older source rocks in the sediment, to the proportions of younger to older source rocks present in the crust from which the sediment derived. We suggest that a Hadean/Archean value of K = 1 (i.e., no preferential erosion), and that post-Archaean values of K = 4–6, may be reasonable for the global Earth system. Models built on the detrital zircon and the fine-grained sediment records independently suggest that at least 65% of the present volume of continental crust was established by 3 Ga. The continental crust has been generated continuously, but with a marked decrease in the growth rate at ~ 3 Ga. The period from > 4 Ga to ~ 3 Ga is characterised by relatively high net rates of continental growth (2.9–3.4 km3 yr−1 on average), which are similar to the rates at which new crust is generated (and destroyed) at the present time. Net growth rates are much lower since 3 Ga (0.6–0.9 km3 yr−1 on average), which can be attributed to higher rates of destruction of continental crust. The change in slope in the continental growth curve at ~ 3 Ga is taken to indicate a global change in the way bulk crust was generated and preserved, and this change has been linked to the onset of subduction-driven plate tectonics. At least 100% of the present volume of the continental crust has been destroyed and recycled back into the mantle since ~ 3 Ga, and this time marks a transition in the average composition of new continental crust. Continental crust generated before 3 Ga was on average mafic, dense, relatively thin (< 20 km) and therefore different from the calc-alkaline andesitic crust that dominates the continental record today. Continental crust that formed after 3 Ga gradually became more intermediate in composition, buoyant and thicker. The increase in crustal thickness is accompanied by increasing rates of crustal reworking and increasing input of sediment to the ocean. These changes may have been accommodated by a change in lithospheric strength at around 3 Ga, as it became strong enough to support high-relief crust. This time period therefore indicates when significant volumes of continental crust started to become emergent and were available for erosion and weathering, thus impacting on the composition of the atmosphere and the oceans.

KW - Continental growth

KW - Hadean/Archaean

KW - Plate tectonics

KW - Zircon

KW - Shale

KW - U-Pb/Hf/Nd/O isotopes

U2 - 10.1016/j.sedgeo.2017.06.001

DO - 10.1016/j.sedgeo.2017.06.001

M3 - Article

VL - 357

SP - 16

EP - 32

JO - Sedimentary Geology

T2 - Sedimentary Geology

JF - Sedimentary Geology

SN - 0037-0738

ER -

Related by author

  1. Geological archive of the onset of plate tectonics

    Cawood, P. A., Hawkesworth, C. J., Pisarevsky, S. A., Dhuime, B., Capitanio, F. A. & Nebel, O., 13 Nov 2018, In : Philosophical Transactions of the Royal Society. A, Mathematical, Physical and Engineering Sciences . 376, 2132, 30 p., 20170405.

    Research output: Contribution to journalArticle

  2. Earth's continental lithosphere through time

    Hawkesworth, C. J., Cawood, P. A., Dhuime, B. & Kemp, T. I. S., Jun 2017, In : Annual Review of Earth and Planetary Sciences.

    Research output: Contribution to journalReview article

  3. Short episodes of crust generation during protracted accretionary processes

    Tang, G-J., Chung, S-L., Hawkesworth, C. J., Cawood, P. A., Wang, Q., Wyman, D. A., Xu, Y-G. & Zhao, Z-H., 15 Apr 2017, In : Earth and Planetary Science Letters. 464, p. 142-154 13 p.

    Research output: Contribution to journalArticle

  4. Tectonic settings of continental crust formation: insights from Pb isotopes in feldspar inclusions in zircon

    Delavault, H., Dhuime, B., Hawkesworth, C. J., Cawood, P. A., Marschall, H. & the Edinburgh Ion Microprobe Facility, 1 Oct 2016, In : Geology. 44, 10, p. 819-822 4 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Detrital zircon provenance of Upper Ordovician and Silurian strata in the northeastern Yangtze Block: Response to orogenesis in South China

    Xu, Y., Du, Y., Cawood, P. A., Zhu, Y., Li, W. & Yu, W., 1 Aug 2012, In : Sedimentary Geology. 267, p. 63-72 10 p.

    Research output: Contribution to journalArticle

  2. Large Igneous Province and magmatic arc sourced Permian-Triassic volcanogenic sediments in China

    Yang, J., Cawood, P. A., Du, Y., Huang, H., Huang, H. & Tao, P., 15 Jun 2012, In : Sedimentary Geology. 261, p. 120-131 12 p.

    Research output: Contribution to journalArticle

  3. Detrital zircon record of continental collision: Assembly of the Qilian Orogen, China

    Xu, Y-J., Du, Y-S., Cawood, P. A., Guo, H., Huang, H. & An, Z-H., 1 Oct 2010, In : Sedimentary Geology. 230, 1-2, p. 35-45 11 p.

    Research output: Contribution to journalArticle

  4. Silurian collisional suturing onto the southern margin of the North China craton: Detrital zircon geochronology constraints from the Qilian Orogen

    Yang, J-H., Du, Y-S., Cawood, P. A. & Xu, Y-J., 15 Sep 2009, In : Sedimentary Geology. 220, 1-2, p. 95-104 10 p.

    Research output: Contribution to journalArticle

ID: 250198215