Skip to content

Research at St Andrews

Continual activity recognition with generative adversarial networks

Research output: Contribution to journalArticlepeer-review

DOI

Open Access permissions

Open

Author(s)

Juan Ye, Pakawat Nakwijit, Martin Schiemer, Saurav Jha, Franco Zambonelli

School/Research organisations

Abstract

Continual learning is an emerging research challenge in human activity recognition (HAR). As an increasing number of HAR applications are deployed in real-world environments, it is important and essential to extend the activity model to adapt to the change in people's activity routine. Otherwise, HAR applications can become obsolete and fail to deliver activity-aware services. The existing research in HAR has focused on detecting abnormal sensor events or new activities, however, extending the activity model is currently under-explored. To directly tackle this challenge, we build on the recent advance in the area of lifelong machine learning and design a continual activity recognition system, called HAR-GAN, to grow the activity model over time. HAR-GAN does not require a prior knowledge on what new activity classes might be and it does not require to store historical data by leveraging the use of Generative Adversarial Networks (GAN) to generate sensor data on the previously learned activities. We have evaluated HAR-GAN on four third-party, public datasets collected on binary sensors and accelerometers. Our extensive empirical results demonstrate the effectiveness of HAR-GAN in continual activity recognition and shed insight on the future challenges.
Close

Details

Original languageEnglish
Article number9
Pages (from-to)1-25
Number of pages25
JournalACM Transactions on Internet of Things
Volume2
Issue number2
DOIs
Publication statusPublished - 27 Mar 2021

    Research areas

  • Generative adversarial networks, Continual learning, Human activity recognition, Smart home, Accelerometer

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. ContrasGAN: unsupervised domain adaptation in Human Activity Recognition via adversarial and contrastive learning

    Rosales Sanabria, A., Zambonelli, F., Dobson, S. A. & Ye, J., 6 Nov 2021, (E-pub ahead of print) In: Pervasive and Mobile Computing. In Press, p. 1-34 34 p., 101477.

    Research output: Contribution to journalArticlepeer-review

  2. Collaborative activity recognition with heterogeneous activity sets and privacy preferences

    Civitarese, G., Ye, J., Zampatti, M. & Bettini, C., 4 Nov 2021, (E-pub ahead of print) In: Journal of Ambient Intelligence and Smart Environments. Pre-press, p. 1-20 20 p.

    Research output: Contribution to journalArticlepeer-review

  3. Investigating multisensory integration in emotion recognition through bio-inspired computational models

    Mansouri Benssassi, E. & Ye, J., 19 Aug 2021, (E-pub ahead of print) In: IEEE Transactions on Affective Computing. Early Access, 13 p.

    Research output: Contribution to journalArticlepeer-review

  4. Continual learning in sensor-based human activity recognition: an empirical benchmark analysis

    Jha, S., Schiemer, M., Zambonelli, F. & Ye, J., 16 Apr 2021, (E-pub ahead of print) In: Information Sciences. In Press, p. 1-35 35 p.

    Research output: Contribution to journalArticlepeer-review

  5. Shared learning activity labels across heterogeneous datasets

    Ye, J., 9 Mar 2021, In: Journal of Ambient Intelligence and Smart Environments. Pre-press, p. 1-18

    Research output: Contribution to journalArticlepeer-review

ID: 271472084

Top