Skip to content

Research at St Andrews

Continual learning in sensor-based human activity recognition: an empirical benchmark analysis

Research output: Contribution to journalArticlepeer-review

Open Access Status

  • Embargoed (until 16/04/22)

Author(s)

Saurav Jha, Martin Schiemer, Franco Zambonelli, Juan Ye

School/Research organisations

Abstract

Sensor-based human activity recognition (HAR), i.e., the ability to discover human daily activity patterns from wearable or embedded sensors, is a key enabler for many real-world applications in smart homes, personal healthcare, and urban planning. However, with an increasing number of applications being deployed, an important question arises: how can a HAR system autonomously learn new activities over a long period of time without being re-engineered from scratch? This problem is known as continual learning and has been particularly popular in the domain of computer vision, where several techniques to attack it have been developed. This paper aims to assess to what extent such continual learning techniques can be applied to the HAR domain. To this end, we propose a general framework to evaluate the performance of such techniques on various types of commonly used HAR datasets. Then, we present a comprehensive empirical analysis of their computational cost and of their effectiveness of tackling HAR specific challenges (i.e., sensor noise and labels’ scarcity). The presented results uncover useful insights on their applicability and suggest future research directions for HAR systems.
Close

Details

Original languageEnglish
Pages (from-to)1-35
Number of pages35
JournalInformation Sciences
VolumeIn Press
Early online date16 Apr 2021
DOIs
Publication statusE-pub ahead of print - 16 Apr 2021

    Research areas

  • Human activity recognition, Continual learning, Lifelong learning, Incremental learning

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. ContrasGAN: unsupervised domain adaptation in Human Activity Recognition via adversarial and contrastive learning

    Rosales Sanabria, A., Zambonelli, F., Dobson, S. A. & Ye, J., 6 Nov 2021, (E-pub ahead of print) In: Pervasive and Mobile Computing. In Press, p. 1-34 34 p., 101477.

    Research output: Contribution to journalArticlepeer-review

  2. Collaborative activity recognition with heterogeneous activity sets and privacy preferences

    Civitarese, G., Ye, J., Zampatti, M. & Bettini, C., 4 Nov 2021, (E-pub ahead of print) In: Journal of Ambient Intelligence and Smart Environments. Pre-press, p. 1-20 20 p.

    Research output: Contribution to journalArticlepeer-review

  3. Investigating multisensory integration in emotion recognition through bio-inspired computational models

    Mansouri Benssassi, E. & Ye, J., 19 Aug 2021, (E-pub ahead of print) In: IEEE Transactions on Affective Computing. Early Access, 13 p.

    Research output: Contribution to journalArticlepeer-review

  4. Continual activity recognition with generative adversarial networks

    Ye, J., Nakwijit, P., Schiemer, M., Jha, S. & Zambonelli, F., 27 Mar 2021, In: ACM Transactions on Internet of Things. 2, 2, p. 1-25 25 p., 9.

    Research output: Contribution to journalArticlepeer-review

  5. Shared learning activity labels across heterogeneous datasets

    Ye, J., 9 Mar 2021, In: Journal of Ambient Intelligence and Smart Environments. Pre-press, p. 1-18

    Research output: Contribution to journalArticlepeer-review

ID: 273768558

Top