Skip to content

Research at St Andrews

Continuum tuning of nanoparticle interfacial properties by dynamic covalent exchange

Research output: Contribution to journalArticlepeer-review

DOI

Open Access permissions

Open

Author(s)

William Edwards, Nicolas Marro, Grace Turner, Euan R. Kay

School/Research organisations

Abstract

Surface chemical composition is fundamental to determining properties on the nanoscale, making precise control over surface chemistry critical to being able to optimise nanomaterials for virtually any application. Surface-engineering independent of the preparation of the underlying nanomaterial is particularly attractive for efficient, divergent synthetic strategies, and for the potential to create reactive, responsive and smart nanodevices. For monolayer-stabilised nanoparticles, established methods include ligand exchange to replace the ligand shell in its entirety, encapsulation with amphiphilic (macro)molecules, noncovalent interactions with surface-bound biomolecules, or a relatively limited number of covalent bond forming reactions. Yet, each of these approaches has considerable drawbacks. Here we show that dynamic covalent exchange at the periphery of the nanoparticle-stabilizing monolayer allows surface-bound ligand molecular structure to be substantially modified in mild and reversible processes that are independent of the nanoparticle–molecule interface. Simple stoichiometric variation allows the extent of exchange to be controlled, generating a range of kinetically stable mixed-monolayer compositions across an otherwise identical, self-consistent series of nanoparticles. This approach can be used to modulate nanoparticle properties that are defined by the monolayer composition. We demonstrate switching of nanoparticle solvent compatibility between widely differing solvents – spanning hexane to water – and the ability to tune solubility across the entire continuum between these extremes, all from a single nanoparticle starting point. We also demonstrate that fine control over mixed-monolayer composition influences the assembly of discrete, colloidally stable nanoparticle clusters. By carefully assessing monolayer composition in each state, using both in situ and ex situ methods, we are able to correlate the molecular-level details of the nanoparticle-bound monolayer with system-level properties and behaviour. These empirically determined relationships contribute fundamental insights on nanoscale structure–function relationships, which are currently beyond the capabilities of ab initio prediction.
Close

Details

Original languageEnglish
Pages (from-to)125-133
JournalChemical Science
Volume9
Issue number1
Early online date17 Nov 2017
DOIs
Publication statusPublished - 7 Jan 2018

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Programmable dynamic covalent nanoparticle building blocks with complementary reactivity

    Marro, N., della Sala, F. & Kay, E. R., 14 Jan 2020, In: Chemical Science. 11, 2, p. 372-383 12 p.

    Research output: Contribution to journalArticlepeer-review

  2. Probing the interaction of nanoparticles with small molecules in real time via quartz crystal microbalance monitoring

    Yang, Y., Poss, G., Weng, Y., Qi, R., Zheng, H., Nianias, N., Kay, E. R. & Guldin, S., 21 Jun 2019, In: Nanoscale. 11, 23, p. 11107-11113 7 p.

    Research output: Contribution to journalArticlepeer-review

  3. Twin-FRET: A New Molecular Ruler for Biomolecules

    Jana, S., Diez-Castellnou, M., Kay, E. R. & Penedo, C., 15 Feb 2019, In: Biophysical Journal. 116, 3, p. 565A-565A 1 p.

    Research output: Contribution to journalAbstractpeer-review

  4. Optical trapping of ultrasmooth gold nanoparticles in liquid and air

    Arita, Y., Tkachenko, G., McReynolds, N., Marro, N., Edwards, W., Kay, E. R. & Dholakia, K., 25 Jun 2018, In: APL Photonics. 3, 8 p., 070801.

    Research output: Contribution to journalArticlepeer-review

  5. Switchable selectivity within a series of boronate esters for dynamic covalent exchange in nonaqueous solvents

    Borsley, S., Poss, G., Spicer, R. L., Boudin, E. & Kay, E. R., 22 Feb 2018, In: Supramolecular Chemistry. Latest Articles, 10 p.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Albumin-mediated alteration of plasma zinc speciation by fatty acids modulates blood clotting in type-2 diabetes

    Sobczak, A. I. S., Katundu, K. G. H., Phoenix, F. A., Khazaipoul, S., Yu, R., Lampiao, F., Stefanowicz, F., Blindauer, C. A., Pitt, S. J., Smith, T. K., Ajjan, R. A. & Stewart, A. J., 1 Feb 2021, In: Chemical Science. Advance Article, 15 p.

    Research output: Contribution to journalArticlepeer-review

  2. Single-step synthesis and interface tuning of core–shell metal–organic framework nanoparticles

    Orr, K. W. P., Collins, S. M., Reynolds, E. M., Nightingale, F., Boström, H. L. B., Cassidy, S. J., Dawson, D. M., Ashbrook, S. E., Magdysyuk, O. V., Midgley, P., Goodwin, A. L. & Yeung, H. H-M., 9 Feb 2021, In: Chemical Science. Advance Article, 9 p.

    Research output: Contribution to journalArticlepeer-review

  3. Mechanomechanically assisted hydrolysis in the ADOR process

    Rainer, D. N., Rice, C. M., Warrender, S. J., Ashbrook, S. E. & Morris, R. E., 15 Jun 2020, In: Chemical Science. Advance Article, 10 p.

    Research output: Contribution to journalArticlepeer-review

  4. Method for accurate experimental determination of singlet and triplet exciton diffusion between thermally activated delayed fluorescence molecules

    Jakoby, M., Heidrich, S., Graf von Reventlow, L., Degitz, C., Madayanad Suresh, S., Zysman-Colman, E., Wenzel, W., Richards, B. & Howard, I., 16 Nov 2020, In: Chemical Science. Advance article

    Research output: Contribution to journalArticlepeer-review

  5. Programmable dynamic covalent nanoparticle building blocks with complementary reactivity

    Marro, N., della Sala, F. & Kay, E. R., 14 Jan 2020, In: Chemical Science. 11, 2, p. 372-383 12 p.

    Research output: Contribution to journalArticlepeer-review

ID: 251516175

Top