Skip to content

Research at St Andrews

Contribution of phase-mixing of Alfvén waves to coronal heating in multi-harmonic loop oscillations

Research output: Contribution to journalArticle

Author(s)

Paolo Pagano, David James Pascoe, Ineke De Moortel

School/Research organisations

Abstract

Context. Kink oscillations of a coronal loop are observed and studied in detail because they provide a unique probe into the structure of coronal loops through MHD seismology and a potential test of coronal heating through the phase-mixing of Alfvén waves . In particular, recent observations show that standing oscill ations of loops often involve also higher harmonics, beside the fundamental mode. The damping of these kink oscillations is explained by mode coupling with Alfvén waves.

Aims. We investigate the consequences for wave-based coronal hea ting of higher harmonics and what coronal heating observational signatures we may use to infer the presence of higher harmonic kink oscillations.

Methods. We perform a set of non-ideal MHD simulations where the damping of the kink oscillation of a flux tube via mode coupling is modelled. Our MHD simulation parameters are based on the seismological inversion of an observation for which the first three harmonics are detected. We study the phase-mixing of Alfvén waves that leads to the deposition of heat in the system, and we apply the seismological inversion techniques to the MHD simulation output.

Results. We find that the heating due to phase-mixing of the Alfvén wave s triggered by the damping of the kink oscillation is relatively small, however we can illustrate i) how the heating location drifts due to the subsequent damping of lower order harmonics. We also address the role of the higher order harmonics and the width of the boundary shell in the energy deposition.

Conclusions. We conclude that the coronal heating due to phase-mixing see ms not to provide enough energy to maintain the thermal structure of the solar corona even when multi-harmonics oscillations are included, and these oscillations play an inhibiting role in the development of smaller scale structures.
Close

Details

Original languageEnglish
Article numberA125
Number of pages12
JournalAstronomy & Astrophysics
Volume616
DOIs
Publication statusPublished - 29 Aug 2018

    Research areas

  • Magnetohydrodynamics (MHD), Sun: atmosphere, Sun: corona, Sun: magnetic fields, Sun: oscillations, Waves

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Effect of coronal loop structure on wave heating by phase mixing

    Pagano, P., De Moortel, I. & Morton, R., 9 Sep 2020, (Accepted/In press) In : Astronomy & Astrophysics.

    Research output: Contribution to journalArticle

  2. Chromospheric evaporation and phase mixing of Alfvén waves in coronal loops

    Van Damme, H. J., De Moortel, I., Pagano, P. & Johnston, C. D., 31 Mar 2020, In : Astronomy & Astrophysics. 635, 11 p., A174.

    Research output: Contribution to journalArticle

  3. MHD simulations of the in-situ generation of kink and sausage waves in the solar corona by collision of dense plasma clumps

    Pagano, P., Van Damme, H-J., Antolin, P. & De Moortel, I., Jun 2019, In : Astronomy & Astrophysics. 626, 12 p., A53.

    Research output: Contribution to journalArticle

  4. In situ generation of transverse magnetohydrodynamic waves from colliding flows in the solar corona

    Antolin, P., Pagano, P., De Moortel, I. & Nakariakov, V. M., 9 Jul 2018, In : Astrophysical Journal Letters. 861, 2, L15.

    Research output: Contribution to journalArticle

Related by journal

  1. A wide survey for circumstellar disks in the Lupus complex

    Teixeira, P. S., Scholz, A. & Alves, J., 1 Jul 2020, In : Astronomy & Astrophysics.

    Research output: Contribution to journalArticle

  2. Aluminium oxide in the atmosphere of hot Jupiter WASP-43b

    Chubb, K. L., Min, M., Kawashima, Y., Helling, C. & Waldmann, I., 1 Jul 2020, In : Astronomy and Astrophysics. 639, 13 p., A3.

    Research output: Contribution to journalArticle

  3. An ultra-short period rocky super-Earth orbiting the G2-star HD 80653

    Frustagli, G., Poretti, E., Milbourne, T., Malavolta, L., Mortier, A., Singh, V., Bonomo, A. S., Buchhave, L. A., Zeng, L., Vanderburg, A., Udry, S., Andreuzzi, G., Collier-Cameron, A., Cosentino, R., Damasso, M., Ghedina, A., Harutyunyan, A., Haywood, R. D., Latham, D. W., López-Morales, M. & 9 others, Lorenzi, V., Martinez Fiorenzano, A. F., Mayor, M., Micela, G., Molinari, E., Pepe, F., Phillips, D., Rice, K. & Sozzetti, A., Jan 2020, In : Astronomy & Astrophysics. 633, 11 p., A133.

    Research output: Contribution to journalArticle

  4. Chromospheric evaporation and phase mixing of Alfvén waves in coronal loops

    Van Damme, H. J., De Moortel, I., Pagano, P. & Johnston, C. D., 31 Mar 2020, In : Astronomy & Astrophysics. 635, 11 p., A174.

    Research output: Contribution to journalArticle

  5. Coronal energy release by MHD avalanches: heating mechanisms

    Reid, J., Cargill, P., Hood, A. W., Parnell, C. E. & Arber, T. D., Jan 2020, In : Astronomy & Astrophysics. 633, 16 p., A158.

    Research output: Contribution to journalArticle

Related by journal

  1. Astronomy & Astrophysics (Journal)

    Duncan Hendry Mackay (Editor)

    2004 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

  2. Astronomy & Astrophysics (Journal)

    Christiane Helling (Editor)

    2000 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

  3. Astronomy & Astrophysics (Journal)

    Alan William Hood (Editor)

    1980 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

ID: 252945932

Top