Skip to content

Research at St Andrews

Convectively induced shear instability in large amplitude internal solitary waves

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Author(s)

Magda Carr, D Fructus, J Grue, A Jensen, P A Davies

School/Research organisations

Abstract

Laboratory study has been carried out to investigate the instability of an internal solitary wave of depression in a shallow stratified fluid system. The experimental campaign has been supported by theoretical computations and has focused on a two layered stratification consisting of a homogeneous dense layer below a linearly stratified top layer. The initial background stratification has been varied and it is found that the onset and intensity of breaking are affected dramatically by changes in the background stratification. Manifestations of a combination of shear and convective instability are seen on the leading face of the wave. It is shown that there is an interplay between the two instability types and convective instability induces shear by enhancing isopycnal compression. Variation in the upper boundary condition is also found to have an effect on stability. In particular, the implications for convective instability are shown to be profound and a dramatic increase in wave amplitude is seen for a fixed (as opposed to free) upper boundary condition.
Close

Details

Original languageEnglish
Article number126601
JournalPhysics of Fluids
Volume20
Issue number12
Early online date5 Dec 2008
DOIs
Publication statusPublished - Dec 2008

    Research areas

  • Convection, Flow instability, Shear flow, Solitons, Stratified flow

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by journal

  1. Physics of Fluids (Journal)

    David Gerard Dritschel (Editor)
    2005 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

Related by journal

  1. Entrapping of a vortex pair interacting with a fixed point vortex revisited. I. Point vortices

    Koshel, K. V., Reinaud, J. N., Riccardi, G. & Ryzhov, E. A., 28 Sep 2018, In : Physics of Fluids. 30, 9, 096603.

    Research output: Contribution to journalArticle

  2. Entrapping of a vortex pair interacting with a fixed point vortex revisited. II. Finite size vortices and the effect of deformation

    Reinaud, J. N., Koshel, K. V. & Ryzhov, E. A., 28 Sep 2018, In : Physics of Fluids. 30, 9, 10 p., 096604.

    Research output: Contribution to journalArticle

  3. Hetonic quartets in a two-layer quasi-geostrophic flow: V-states and stability

    Reinaud, J. N., Sokolovskiy, M. & Carton, X., 11 May 2018, In : Physics of Fluids. 30, 21 p., 056602.

    Research output: Contribution to journalArticle

  4. Geostrophic tripolar vortices in a two-layer fluid: linear stability and nonlinear evolution of equilibria

    Reinaud, J. N., Sokolovskiy, M. & Carton, X., Mar 2017, In : Physics of Fluids. 29, 3, 16 p., 036601.

    Research output: Contribution to journalArticle

  5. Interaction between a surface quasi-geostrophic buoyancy anomaly jet and internal vortices

    Reinaud, J. N., Dritschel, D. G. & Carton, X., Aug 2017, In : Physics of Fluids. 29, 8, 16 p., 086603.

    Research output: Contribution to journalArticle

ID: 338934