Skip to content

Research at St Andrews

Counting chirps: acoustic monitoring of cryptic frogs

Research output: Contribution to journalArticle

Standard

Counting chirps : acoustic monitoring of cryptic frogs. / Measey, G. John; Stevenson, Ben C.; Scott, Tanya; Altwegg, Res; Borchers, David L.

In: Journal of Applied Ecology, Vol. 54, No. 3, 06.2017, p. 894-902.

Research output: Contribution to journalArticle

Harvard

Measey, GJ, Stevenson, BC, Scott, T, Altwegg, R & Borchers, DL 2017, 'Counting chirps: acoustic monitoring of cryptic frogs' Journal of Applied Ecology, vol. 54, no. 3, pp. 894-902. https://doi.org/10.1111/1365-2664.12810

APA

Measey, G. J., Stevenson, B. C., Scott, T., Altwegg, R., & Borchers, D. L. (2017). Counting chirps: acoustic monitoring of cryptic frogs. Journal of Applied Ecology, 54(3), 894-902. https://doi.org/10.1111/1365-2664.12810

Vancouver

Measey GJ, Stevenson BC, Scott T, Altwegg R, Borchers DL. Counting chirps: acoustic monitoring of cryptic frogs. Journal of Applied Ecology. 2017 Jun;54(3):894-902. https://doi.org/10.1111/1365-2664.12810

Author

Measey, G. John ; Stevenson, Ben C. ; Scott, Tanya ; Altwegg, Res ; Borchers, David L. / Counting chirps : acoustic monitoring of cryptic frogs. In: Journal of Applied Ecology. 2017 ; Vol. 54, No. 3. pp. 894-902.

Bibtex - Download

@article{9e819670c48a42df89bb32c303b71ce9,
title = "Counting chirps: acoustic monitoring of cryptic frogs",
abstract = "1.  Global amphibian declines have resulted in a vital need for monitoring programmes that follow population trends. Monitoring using advertisement calls is ideal as choruses are undisturbed during data collection. However, methods currently employed by managers frequently rely on trained observers, and/or do not provide density data on which to base trends.2.  This study explores the utility of monitoring using acoustic spatially explicit capture-recapture (aSECR) with time of arrival (ToA) and signal strength (SS) as a quantitative monitoring technique to measure call density of a threatened but visually cryptic anuran, the Cape peninsula moss frog Arthroleptella lightfooti. 3.  The relationships between temporal and environmental variables (date, rainfall, temperature) and A. lightfooti call density at three study sites on the Cape peninsula, South Africa were examined. Acoustic data, collected from an array of six microphones over four months during the winter breeding season, provided a time series of call density estimates.4.  Model selection indicated that call density was primarily associated with seasonality fitted as a quadratic function. Call density peaked mid-breeding season. At the main study site, the lowest recorded mean call density (0·160 calls m-2 min-1) occurred in May and reached its peak mid-July (1·259 calls m-2 min-1). The sites differed in call density, but also the effective sampling area.5.  Synthesis and applications.The monitoring technique, acoustic spatially explicit capture–recapture (aSCR), quantitatively estimates call density without disturbing the calling animals or their environment, while time of arrival (ToA) and signal strength (SS) significantly add to the accuracy of call localisation, which in turn increases precision of call density estimates without the need for specialist field staff. This technique appears ideally suited to aid the monitoring of visually cryptic, acoustically active species.",
keywords = "Acoustic spatially explicit capture-recapture, Signal strength, Time of arrival, Triangulation, Anurans",
author = "Measey, {G. John} and Stevenson, {Ben C.} and Tanya Scott and Res Altwegg and Borchers, {David L.}",
note = "Funding for the frog survey was received from the National Geographic Society/Waitt Grants Program (No. W184-11). The EPSRC and NERC helped to fund this research through a PhD grant (No. EP/1000917/1) to D.L.B. R.A. and G.J.M. acknowledge initiative funding from the National Research Foundation of South Africa.",
year = "2017",
month = "6",
doi = "10.1111/1365-2664.12810",
language = "English",
volume = "54",
pages = "894--902",
journal = "Journal of Applied Ecology",
issn = "0021-8901",
publisher = "John Wiley & Sons, Ltd (10.1111)",
number = "3",

}

RIS (suitable for import to EndNote) - Download

TY - JOUR

T1 - Counting chirps

T2 - Journal of Applied Ecology

AU - Measey, G. John

AU - Stevenson, Ben C.

AU - Scott, Tanya

AU - Altwegg, Res

AU - Borchers, David L.

N1 - Funding for the frog survey was received from the National Geographic Society/Waitt Grants Program (No. W184-11). The EPSRC and NERC helped to fund this research through a PhD grant (No. EP/1000917/1) to D.L.B. R.A. and G.J.M. acknowledge initiative funding from the National Research Foundation of South Africa.

PY - 2017/6

Y1 - 2017/6

N2 - 1.  Global amphibian declines have resulted in a vital need for monitoring programmes that follow population trends. Monitoring using advertisement calls is ideal as choruses are undisturbed during data collection. However, methods currently employed by managers frequently rely on trained observers, and/or do not provide density data on which to base trends.2.  This study explores the utility of monitoring using acoustic spatially explicit capture-recapture (aSECR) with time of arrival (ToA) and signal strength (SS) as a quantitative monitoring technique to measure call density of a threatened but visually cryptic anuran, the Cape peninsula moss frog Arthroleptella lightfooti. 3.  The relationships between temporal and environmental variables (date, rainfall, temperature) and A. lightfooti call density at three study sites on the Cape peninsula, South Africa were examined. Acoustic data, collected from an array of six microphones over four months during the winter breeding season, provided a time series of call density estimates.4.  Model selection indicated that call density was primarily associated with seasonality fitted as a quadratic function. Call density peaked mid-breeding season. At the main study site, the lowest recorded mean call density (0·160 calls m-2 min-1) occurred in May and reached its peak mid-July (1·259 calls m-2 min-1). The sites differed in call density, but also the effective sampling area.5.  Synthesis and applications.The monitoring technique, acoustic spatially explicit capture–recapture (aSCR), quantitatively estimates call density without disturbing the calling animals or their environment, while time of arrival (ToA) and signal strength (SS) significantly add to the accuracy of call localisation, which in turn increases precision of call density estimates without the need for specialist field staff. This technique appears ideally suited to aid the monitoring of visually cryptic, acoustically active species.

AB - 1.  Global amphibian declines have resulted in a vital need for monitoring programmes that follow population trends. Monitoring using advertisement calls is ideal as choruses are undisturbed during data collection. However, methods currently employed by managers frequently rely on trained observers, and/or do not provide density data on which to base trends.2.  This study explores the utility of monitoring using acoustic spatially explicit capture-recapture (aSECR) with time of arrival (ToA) and signal strength (SS) as a quantitative monitoring technique to measure call density of a threatened but visually cryptic anuran, the Cape peninsula moss frog Arthroleptella lightfooti. 3.  The relationships between temporal and environmental variables (date, rainfall, temperature) and A. lightfooti call density at three study sites on the Cape peninsula, South Africa were examined. Acoustic data, collected from an array of six microphones over four months during the winter breeding season, provided a time series of call density estimates.4.  Model selection indicated that call density was primarily associated with seasonality fitted as a quadratic function. Call density peaked mid-breeding season. At the main study site, the lowest recorded mean call density (0·160 calls m-2 min-1) occurred in May and reached its peak mid-July (1·259 calls m-2 min-1). The sites differed in call density, but also the effective sampling area.5.  Synthesis and applications.The monitoring technique, acoustic spatially explicit capture–recapture (aSCR), quantitatively estimates call density without disturbing the calling animals or their environment, while time of arrival (ToA) and signal strength (SS) significantly add to the accuracy of call localisation, which in turn increases precision of call density estimates without the need for specialist field staff. This technique appears ideally suited to aid the monitoring of visually cryptic, acoustically active species.

KW - Acoustic spatially explicit capture-recapture

KW - Signal strength

KW - Time of arrival

KW - Triangulation

KW - Anurans

U2 - 10.1111/1365-2664.12810

DO - 10.1111/1365-2664.12810

M3 - Article

VL - 54

SP - 894

EP - 902

JO - Journal of Applied Ecology

JF - Journal of Applied Ecology

SN - 0021-8901

IS - 3

ER -

Related by author

  1. Open population maximum likelihood spatial capture-recapture

    Glennie, R., Borchers, D. L., Murchie, M., Harmsen, B. J. & Foster, R. J., 25 Jul 2019, In : Biometrics. Early View, 11 p.

    Research output: Contribution to journalArticle

  2. inlabru: an R package for Bayesian spatial modelling from ecological survey data

    Bachl, F. E., Lindgren, F., Borchers, D. L. & Illian, J. B., Jun 2019, In : Methods in Ecology and Evolution. 10, 6, p. 760-766 7 p.

    Research output: Contribution to journalArticle

  3. Cluster capture-recapture to account for identification uncertainty on aerial surveys of animal populations

    Stevenson, B. C., Borchers, D. L. & Fewster, R. M., 2019, In : Biometrics. 75, 1, p. 326-336 11 p.

    Research output: Contribution to journalArticle

  4. Point process models for spatio-temporal distance sampling data from a large-scale survey of blue whales

    Yuan, Y., Bachl, F. E., Lindgren, F., Borchers, D. L., Illian, J. B., Buckland, S. T., Rue, H. & Gerrodette, T., Dec 2017, In : Annals of Applied Statistics. 11, 4, p. 2270-2297

    Research output: Contribution to journalArticle

  5. Guest editors’ introduction to the special issue on “Ecological Statistics”

    Langrock, R. & Borchers, D. L., 1 Oct 2017, In : AStA Advances in Statistical Analysis. 101, 4, p. 345-347 3 p.

    Research output: Contribution to journalEditorial

Related by journal

  1. Journal of Applied Ecology (Journal)

    Jason Matthiopoulos (Editor)
    2007 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

Related by journal

  1. Empirical determination of severe trauma in seals from collisions with tidal turbine blades

    Onoufriou, J., Brownlow, A., Moss, S., Hastie, G. & Thompson, D., 14 May 2019, In : Journal of Applied Ecology. Early View, 13 p.

    Research output: Contribution to journalArticle

  2. Harbour seals avoid tidal turbine noise: implications for collision risk

    Hastie, G. D., Russell, D. J. F., Lepper, P., Elliott, J., Wilson, B., Benjamins, S. & Thompson, D., Mar 2018, In : Journal of Applied Ecology. 55, 2, p. 684-693 10 p.

    Research output: Contribution to journalArticle

  3. Marine mammals and sonar: dose-response studies, the risk-disturbance hypothesis and the role of exposure context

    Harris, C. M., Thomas, L., Falcone, E., Hildebrand, J., Houser, D., Kvadsheim, P., Lam, F-P. A., Miller, P., Moretti, D. J., Read, A., Slabbekoorn, H., Southall, B. L., Tyack, P. L., Wartzok, D. & Janik, V. M., Jan 2018, In : Journal of Applied Ecology. 55, 1, p. 396-404

    Research output: Contribution to journalReview article

  4. Seals and shipping: quantifying population risk and individual exposure to vessel noise

    Jones, E. L., Hastie, G. D., Smout, S., Onoufriou, J., Merchant, N. D., Brookes, K. L. & Thompson, D., Dec 2017, In : Journal of Applied Ecology. 54, 6, p. 1930-1940

    Research output: Contribution to journalArticle

ID: 245997147