Skip to content

Research at St Andrews

Crustal reworking and orogenic styles inferred from zircon Hf isotopes: Proterozoic examples from the North Atlantic region

Research output: Contribution to journalArticle

Abstract

Zircon Hf evolutionary patterns are powerful tools that are frequently used to elucidate magma petrogenesis and crustal evolution. After an initial rock forming fractionation event, the 176Hf/177Hf isotopic signature of a rock is modified through ingrowth of radiogenic Hf, dependent on the 176Lu/177Hf ratio. This fractionation process can be modelled to derive an estimation of the time when mantle extraction may have occurred. Additionally, Hf evolution trends can be used to diagnose closed system reworking where successive samples through time define an Hf evolution array dependant on the source Lu/Hf ratio. However, it is widely recognized that many magmatic events require new mantle addition as the thermal impetus for melting pre-existing crust. In this situation, rather than simply reflecting reworking, the isotopic signature indicates mixing with contributions from both reworked crust and new radiogenic input. Different geodynamic settings have different propensities for either reworking or addition of new mantle-derived magma. Hence, Hf-time trends carry within them are cord, albeit cryptic, of the evolving geodynamic environment as different tectonic configurations recycle and add new crust at different rates, magnitudes, and from different sources. As an example of the difference in apparent Hf evolution slopes, we present Hf-time compilations from three geographically distinct orogens in the North Atlantic Region whose geodynamic configurations remain speculative. We use the εHf/Ma trajectory to assist in understanding their evolution. The εHf/Ma trajectory of the Sveconorwegian Orogen corresponds to a 176Lu/177Hf ratio of 0.012, which implies a process driven primarily by reworking of pre-existing crust that is balanced with input from the depleted mantle resulting in a relatively shallow εHf/Ma slope. The Valhalla Orogen reveals a similar comparatively shallow εHf/Ma path. In stark contrast to these patterns is the steep εHf/Ma trajectory of the Grenville Orogen that requires a mixing process involving a greater contribution of old crust of at least ∼1.8 Ga age. The degree of reworking required to produce the εHf/Ma trend of the Grenville Orogen is consistent with a continent-continent collisional orogeny whereas both Sveconorwegian and Valhalla orogens appear more consistent with accretionary margins.
Close

Details

Original languageEnglish
Pages (from-to)417-424
JournalGeoscience Frontiers
Volume10
Issue number2
Early online date19 Oct 2018
DOIs
Publication statusPublished - Mar 2019

    Research areas

  • Zircon, Hf, Crustal evolution, Grenville, Sveconorwegian, Valhalla

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Hydrothermal dedolomitisation of carbonate rocks of the Paleoproterozoic Zaonega Formation, NW Russia — Implications for the preservation of primary C isotope signals

    Kreitsmann, T., Külaviir, M., Lepland, A., Paiste, K., Paiste, P., Prave, A. R., Sepp, H., Romashkin, A. E., Rychanchik, D. V. & Kirsimäe, K., 5 May 2019, In : Chemical Geology. 512, p. 43-57 15 p.

    Research output: Contribution to journalArticle

  2. 1.99 Ga mafic magmatism in the Rona terrane of the Lewisian Gneiss Complex in Scotland

    Baker, T. R., Prave, A. R. & Spencer, C. J., 28 Dec 2018, In : Precambrian Research. In press

    Research output: Contribution to journalArticle

  3. Evolution of the Mozambique Belt in Malawi constrained by granitoid U-Pb, Sm-Nd and Lu-Hf isotopic data

    Manda, B. W. C., Cawood, P. A., Spencer, C. J., Prave, T., Robinson, R. & Roberts, N. M. W., 29 Nov 2018, In : Gondwana Research. In press

    Research output: Contribution to journalArticle

  4. Multiple sulphur isotope records tracking basinal and global processes in the 1.98 Ga Zaonega Formation, NW Russia

    Paiste, K., Lepland, A., Zerkle, A. L., Kirsimäe, K., Izon, G. J., Patel, N., McLean, F., Kreitsmann, T., Mänd, K., Bui, T., Romashkin, A., Rychanchik, D. & Prave, A. R., 5 Nov 2018, In : Chemical Geology. 499, p. 151-164 14 p.

    Research output: Contribution to journalArticle

  5. Two-billion-year-old evaporites capture Earth's great oxidation

    Blättler, C., Claire, M., Prave, A. R., Zerkle, A. L. & Warke, M. R., 22 Mar 2018, In : Science. eaar2687.

    Research output: Contribution to journalArticle

Related by journal

  1. Zircon geochronology reveals polyphase magmatism and crustal anatexis in the Buchan Block, NE Scotland: implications for the Grampian Orogeny

    Johnson, T. E., Kirkland, C. L., Viete, D. R., Fischer, S., Reddy, S. M., Evans, N. J. & McDonald, B. J., Nov 2017, In : Geoscience Frontiers. 8, 6, p. 1469-1478

    Research output: Contribution to journalArticle

  2. From mantle to critical zone: a review of large and giant sized deposits of the rare earth elements

    Smith, M. P., Moore, K., Kavecsánszki, D., Finch, A. A., Kynicky, J. & Wall, F., May 2016, In : Geoscience Frontiers. 7, 3, p. 315-334 20 p.

    Research output: Contribution to journalArticle

  3. Generation and preservation of continental crust in the Grenville Orogeny

    Spencer, C. J., Cawood, P. A., Hawkesworth, C. J., Prave, A. R., Roberts, N. M. W., Horstwood, M. S. A. & Whitehouse, M. J., 1 May 2015, In : Geoscience Frontiers. 6, 3, p. 357-372 16 p.

    Research output: Contribution to journalArticle

ID: 256289926