Skip to content

Research at St Andrews

Deciphering the state of the late Miocene to early Pliocene equatorial Pacific

Research output: Contribution to journalArticle


Open Access permissions



A. J. Drury, G. P. Lee, W. R. Gray, M. Lyle, T. Westerhold, A. E. Shevenell, C. M. John

School/Research organisations


The late Miocene-early Pliocene was a time of global cooling and the development of modern meridional thermal gradients. Equatorial Pacific sea surface conditions potentially played an important role in this global climate transition, but their evolution is poorly understood. Here, we present the first continuous late Miocene-early Pliocene (8.0-4.4 Ma) planktic foraminiferal stable isotope records from eastern equatorial Pacific Integrated Ocean Drilling Program Site U1338, with a new astrochronology spanning 8.0-3.5 Ma. Mg/Ca analyses on surface dwelling foraminifera Trilobatus sacculifer from carefully selected samples suggest mean sea-surface-temperatures (SSTs) are ~27.8±1.1°C (1σ) between 6.4-5.5 Ma. The planktic foraminiferal δ18O record implies a 2°C cooling between 7.2-6.1 Ma and an up to 3°C warming between 6.1-4.4 Ma, consistent with observed tropical alkenone paleo-SSTs. Diverging fine-fraction-to-foraminiferal δ13C gradients likely suggest increased upwelling from 7.1-6.0 and 5.8-4.6 Ma, concurrent with the globally recognized late Miocene Biogenic Bloom. This study shows that both warm and asymmetric mean states occurred in the equatorial Pacific during the late Miocene-early Pliocene. Between 8.0-6.5 and 5.2-4.4 Ma, low east-west δ18O and SST gradients and generally warm conditions prevailed. However, an asymmetric mean climate state developed between 6.5-5.7 Ma, with larger east-west δ18O and SST gradients and eastern equatorial Pacific cooling. The asymmetric mean state suggests stronger trade winds developed, driven by increased meridional thermal gradients associated with global cooling and declining atmospheric pCO2 concentrations. These oscillations in equatorial Pacific mean state are reinforced by Antarctic cryosphere expansion and related changes in oceanic gateways (e.g., Central American Seaway/Indonesian Throughflow restriction).


Original languageEnglish
Number of pages18
JournalPaleoceanography and Paleoclimatology
VolumeEarly View
Early online date11 Mar 2018
Publication statusE-pub ahead of print - 11 Mar 2018

    Research areas

  • Planktic foraminifera stable isotope records, Late Miocene to early Pliocene, Equatorial Pacific mean state, Surface ocean conditions, Biogenic bloom, Mg/Ca sea surface temperature

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by journal

  1. Atmosphere-ocean CO2 exchange across the last deglaciation from the boron isotope proxy

    Shao, J., Stott, L. D., Gray, W. R., Greenop, R., Pecher, I., Neil, H. L., Coffin, R. B., Davy, B. & Rae, J. W. B., 29 Oct 2019, In : Paleoceanography and Paleoclimatology. Early View, 21 p.

    Research output: Contribution to journalArticle

  2. Improving North Atlantic marine core chronologies using 230Th-normalization

    Missiaen, L., Waelbroeck, C., Pichat, S., Jaccard, S. L., Eynaud, F., Greenop, R. & Burke, A., 10 Jul 2019, In : Paleoceanography and Paleoclimatology. 34, 17 p.

    Research output: Contribution to journalArticle

  3. Acceleration of northern ice sheet melt induces AMOC slowdown and northern cooling in simulations of the early last deglaciation

    Ivanovic, R., Gregoire, L., Burke, A., Wickert, A. D., Valdes, P. J., Ng, H. C., Robinson, L. F., McManus, J. F., Mitrovica, J. X., Lee, L. & Dentith, J. E., 27 Jul 2018, In : Paleoceanography and Paleoclimatology. Early View, 18 p.

    Research output: Contribution to journalArticle

  4. Calibration of the B/Ca proxy in the planktic foraminifer Orbulina universa to Paleocene seawater conditions

    Haynes, L. L., Hönisch, B., Dyez, K. A., Holland, K., Rosenthal, Y., Fish, C. R., Subhas, A. V. & Rae, J. W. B., Jun 2017, In : Paleoceanography. 32, 6, p. 580-599

    Research output: Contribution to journalArticle

ID: 252215512