Skip to content

Research at St Andrews

Deep learning for whole slide image analysis: an overview

Research output: Contribution to journalReview article


The widespread adoption of whole slide imaging has increased the demand for effective and efficient gigapixel image analysis. Deep learning is at the forefront of computer vision, showcasing significant improvements over previous methodologies on visual understanding. However, whole slide images have billions of pixels and suffer from high morphological heterogeneity as well as from different types of artifacts. Collectively, these impede the conventional use of deep learning. For the clinical translation of deep learning solutions to become a reality, these challenges need to be addressed. In this paper, we review work on the interdisciplinary attempt of training deep neural networks using whole slide images, and highlight the different ideas underlying these methodologies.


Original languageEnglish
Article number264
Number of pages7
JournalFrontiers in Medicine
Publication statusPublished - 22 Nov 2019

    Research areas

  • Digital pathology, Computer vision, Oncology, Cancer, Machine learning, Personalized pathology, Image analysis

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Colorectal cancer outcome prediction from H&E whole slide images using machine learning and automatically inferred phenotype profiles

    Yue, X., Dimitriou, N., Caie, P., Harrison, D. & Arandjelovic, O., 18 Mar 2019, Proceedings of 11th International Conference on Bioinformatics and Computational Biology, BICOB 2019: Honolulu; United States; 18 March 2019 through 20 March 2019. Eulenstein, O., Al-Mubaid, H. & Ding, Q. (eds.). EasyChair, p. 139-127 11 p. (EPiC Series in Computing; vol. 60).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  2. A more principled use of the p-value? Not so fast: a critique of Colquhoun's argument

    Arandelović, O., 15 May 2019, In : Royal Society Open Science. 6, 5, 5 p., 181519.

    Research output: Contribution to journalArticle

ID: 263809420