Skip to content

Research at St Andrews

Development of tailored porous microstructures for infiltrated catalyst electrodes by aqueous tape casting methods

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Author(s)

Mark Cassidy, D.J. Doherty, Xiangling Yue, John Thomas Sirr Irvine

School/Research organisations

Abstract

Recent SOFC research has shown that impregnating fine catalyst structures into porous scaffolds to be an extremely promising route for electrode development. It is clear that in optimising the advantages offered by this technique there will be an obvious link between the morphology of the porous scaffold and the infiltrated catalyst. There are significant potential benefits to using aqueous systems for the manufacture of the scaffold. They include the potential for a far larger range of pore formers which may be employed to create specific pore morphologies and also reduced environmental burdens, such as exhaust handling, worker exposure and disposal. Recent and ongoing activities to develop such systems at University of St Andrews will be described. Areas of discussion will be effects of ceramic particle size, the size ratio of pore former to ceramic particle, pore former type and loading and how these interact with other tape constituents both on the behaviour during processing and on the final fired morphology. Better understanding of these complex relationships will help in designing optimised porous structures in the future.
Close

Details

Original languageEnglish
Title of host publication14th International Symposium on Solid Oxide Fuel Cells, SOFC 2015
EditorsK. Eguchi, S. C. Singhal
PublisherElectrochemical Society
Pages2047-2056
Number of pages10
ISBN (Print)9781607685395
DOIs
Publication statusPublished - 17 Jul 2015

Publication series

NameECS Transactions
PublisherElectrochemical Society
Number1
Volume68
ISSN (Print)1938-5862

    Research areas

  • Catalysts, Ceramic materials, Electrodes, Fuel storage, Morphology, Particle size, Aqueous tape casting, Catalyst structures, Catalyst-electrodes, Complex relationships, Environmental burdens, Porous microstructure, Potential benefits

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Development of alternative fuel electrodes for upgrading biogas through CO2

    Zhang, N., Tian, Y., Yue, X., Sammes, L. & Irvine, J., 8 Sep 2019, Solid Oxide Fuel Cells 16, SOFC XVI. Eguchi, K. & Singhal, S. C. (eds.). Electrochemical Society, Inc., p. 2507-2515 9 p. (ECS Transactions; vol. 91, no. 1).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  2. Electrical reduction of perovskite electrodes for accelerating exsolution of nanoparticles

    Chanthanumataporn, M., Hui, J., Yue, X., Kakinuma, K., Irvine, J. T. S. & Hanamura, K., 20 May 2019, In : Electrochimica Acta. 306, p. 159-166 8 p.

    Research output: Contribution to journalArticle

  3. Improved electrochemical performance of LiCoPO4 using eco-friendly aqueous binders

    Kim, E. J., Yue, X., Irvine, J. T. S. & Armstrong, A. R., 1 Nov 2018, In : Journal of Power Sources. 403, p. 11-19 9 p.

    Research output: Contribution to journalArticle

  4. The reduction properties of M-doped (M=Zr, Gd) CeO2/YSZ scaffolds co-infiltrated with nickel

    Maher, R. C., Kerherve, G., Payne, D. J., Yue, X., Connor, P. A., Irvine, J. & Cohen, L. F., 11 Sep 2018, In : Energy Technology. 6, 10, p. 2045-2052

    Research output: Contribution to journalArticle

  5. Tailoring SOFC electrode microstructures for improved performance

    Connor, P. A., Yue, X., Savaniu, C. D., Price, R., Triantafyllou, G., Cassidy, M., Kerherve, G., Payne, D. J., Maher, R. C., Cohen, L. F., Tomov, R. I., Glowacki, B. A., Kumar, R. V. & Irvine, J. T. S., 16 Aug 2018, In : Advanced Energy Materials. 8, 23, 1800120.

    Research output: Contribution to journalArticle

ID: 213554444

Top