Skip to content

Research at St Andrews

Development of very high luminance p–i–n junction-based blue fluorescent organic light-emitting diodes

Research output: Contribution to journalArticle


Open Access permissions



Organic light‐emitting diodes (OLEDs) can emit light over much larger areas than their inorganic counterparts, offer mechanical flexibility, and can be readily integrated on various substrates and backplanes. However, the amount of light they emit per unit area is typically lower and the required operating voltage is higher, which can be a limitation for emerging applications of OLEDs, e.g., in outdoor and high‐dynamic‐range displays, biomedical devices, or visible‐light communication. Here, high‐luminance, blue‐emitting (λpeak = 464 nm), fluorescent p–i–n OLEDs are developed by combining three strategies: First, the thickness of the intrinsic layers in the device is decreased to reduce internal voltage loss. Second, different electron‐blocking layer materials are tested to recover efficiency losses resulting from this thickness reduction. Third, the geometry of the anode contact is optimized, which leads to a substantial reduction in the in‐plane resistive voltage losses. The OLEDs retain a maximum external quantum efficiency of 4.4% as expected for an optimized fluorescent device and reach a luminance of 132 000 cd m−2 and an optical power density of 2.4 mW mm−2 at 5 V, a nearly eightfold improvement compared to the original reference device.


Original languageEnglish
Article number1901721
JournalAdvanced Optical Materials
VolumeEarly View
Early online date20 Jan 2020
Publication statusE-pub ahead of print - 20 Jan 2020

    Research areas

  • CMOS-compatible devices, Device dimensions, Electron-blocking layer, High brightness, High current density, Organic light-emitting diodes, Resistance of anode contact

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Narrowband organic light-emitting diodes for fluorescence microscopy and calcium imaging

    Murawski, C., Mischok, A., Booth, J. H., Kumar, J. D., Archer, E., Tropf, L. C., Keum, C., Deng, Y., Yoshida, K., Samuel, I. D. W., Schubert, M., Pulver, S. & Gather, M. C., 5 Sep 2019, In : Advanced Materials. Early View, 8 p.

    Research output: Contribution to journalArticle

  2. The role of metallic dopants in improving the thermal stability of the electron transport layer in organic light-emitting diodes

    Keum, C-M., Kronenberg, N. M., Murawski, C., Yoshida, K., Deng, Y., Berz, C., Li, W., Wei, M., Samuel, I. D. W. & Gather, M. C., 25 Jun 2018, In : Advanced Optical Materials. Early View, 1800496.

    Research output: Contribution to journalArticle

  3. Exciton efficiency beyond the spin statistical limit in organic light emitting diodes based on anthracene derivatives

    Sharma, N., Wong, M. Y., Hall, D., Spuling, E., Tenopala Carmona, F., Privitera, A., Copley, G. J., Cordes, D. B., Slawin, A. M. Z., Murawski, C., Gather, M. C., Beljonne, D., Olivier, Y., Samuel, I. D. W. & Zysman-Colman, E., 28 Jan 2020, In : Journal of Materials Chemistry C. In press

    Research output: Contribution to journalArticle

  4. 1,3,4-oxadiazole-based deep-blue thermally activated delayed fluorescence emitters for organic light emitting diodes

    Li, Z., Li, W., Keum, C., Archer, E., Zhao, B., Slawin, A. M. Z., Huang, W., Gather, M. C., Samuel, I. D. W. & Zysman-Colman, E., 10 Oct 2019, In : Journal of Physical Chemistry. 123, 40, p. 24772-24785

    Research output: Contribution to journalArticle

Related by journal

  1. A new twist for materials science: the formation of chiral structures using the angular momentum of light

    Omatsu, T., Miyamoto, K., Toyoda, K., Morita, R., Arita, Y. & Dholakia, K., 19 Jun 2019, In : Advanced Optical Materials. Early View, 18 p., 1801672.

    Research output: Contribution to journalReview article

  2. Bipyridine-containing host materials for high performance yellow thermally activated delayed fluorescence-based organic light emitting diodes with very low efficiency roll-off

    Chen, D., Pachai, R., Tenopala Carmona, F., Carpenter-Warren, C. L., Cordes, D. B., Keum, C., Slawin, A. M. Z., Gather, M. C. & Zysman-Colman, E., 21 Nov 2019, In : Advanced Optical Materials. Early View, 1901283.

    Research output: Contribution to journalArticle

  3. Improving processability and efficiency of Resonant TADF emitters: a design strategy

    Hall, D., Madayanad Suresh, S., dos Santos, P. L., Duda, E., Bagnich, S., Pershin, A., Pachai Gounder, R., Cordes, D. B., Slawin, A. M. Z., Belijonne, D., Köhler, A., Samuel, I. D. W., Olivier, Y. & Zysman-Colman, E., 3 Dec 2019, In : Advanced Optical Materials. Early View, 1901627.

    Research output: Contribution to journalArticle

ID: 266224627