Skip to content

Research at St Andrews

Direct methane solid oxide fuel cells based on catalytic partial oxidation enabling complete coking tolerance of Ni-based anodes

Research output: Contribution to journalArticle


Daehee Lee, Jaeha Myung, Jeiwan Tan, Sang-Hoon Hyun, John T. S. Irvine, Joosun Kim, Jooho Moon

School/Research organisations


Solid oxide fuel cells (SOFCs) can oxidize diverse fuels by harnessing oxygen ions. Benefited by this feature, direct utilization of hydrocarbon fuels without external reformers allows for cost-effective realization of SOFC systems. Superior hydrocarbon reforming catalysts such as nickel are required for this application. However, carbon coking on nickel-based anodes and the low efficiency associated with hydrocarbon fueling relegate these systems to immature technologies. Herein, we present methane-fueled SOFCs operated under conditions of catalytic partial oxidation (CPOX). Utilizing CPOX eliminates carbon coking on Ni and facilitates the oxidation of methane. Ni-gadolinium-doped ceria (GDC) anode-based cells exhibit exceptional power densities of 1.35 W cm−2 at 650 °C and 0.74 W cm−2 at 550 °C, with stable operation over 500 h, while the similarly prepared Ni-yttria stabilized zirconia anode-based cells exhibit a power density of 0.27 W cm−2 at 650 °C, showing gradual degradation. Chemical analyses suggest that combining GDC with the Ni anode prevents the oxidation of Ni due to the oxygen exchange ability of GDC. In addition, CPOX operation allows the usage of stainless steel current collectors. Our results demonstrate that high-performance SOFCs utilizing methane CPOX can be realized without deterioration of Ni-based anodes using cost-effective current collectors.


Original languageEnglish
Pages (from-to)30-40
Number of pages11
JournalJournal of Power Sources
Early online date6 Feb 2017
Publication statusPublished - 31 Mar 2017

    Research areas

  • Solid oxide fuel cell, Methane fueling, Ni catalyst, Catalytic partial oxidation, Oxygen exchange kinetics

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Lattice strain-enhanced exsolution of nanoparticles in thin films

    Han, H., Park, J., Nam, S. Y., Choi, G. M., Parkin, S. S. P., Jang, H. M. & Irvine, J. T. S., 1 Apr 2019, In : Nature Communications. 10, 8 p., 1471.

    Research output: Contribution to journalArticle

  2. Oxygen storage capacity and thermal stability of brownmillerite-type Ca2(Al1-xGax)MnO5+δ oxides

    Huang, X., Ni, C. & Irvine, J. T. S., 14 Aug 2019, In : Journal of Alloys and Compounds. In press

    Research output: Contribution to journalArticle

  3. Photo-catalytic hydrogen production over Au/g-C3N4: effect of gold particle dispersion and morphology

    Caux, M., Menard, H., AlSalik, Y. M., Irvine, J. T. S. & Idriss, H., 7 Aug 2019, In : Physical Chemistry Chemical Physics. 21, 29, p. 15974-15987 14 p.

    Research output: Contribution to journalArticle

  4. In situ thermal battery discharge using CoS2 as a cathode material

    Payne, J. L., Percival, J. D., Giagloglou, K., Crouch, C., Carins, G. M., Smith, R., Gover, R. & Irvine, J. T. S., 2 Aug 2019, In : Journal of The Electrochemical Society. 166, 12, p. A2660-A2664 5 p.

    Research output: Contribution to journalArticle

  5. Using cellulose polymorphs for enhanced hydrogen production from photocatalytic reforming

    Chang, C., Skillen, N., Nagarajan, S., Ralphs, K., Irvine, J. T. S., Lawton, L. & Robertson, P. K. J., 1 Aug 2019, In : Sustainable Energy & Fuels. 3, 8, p. 1971-1975 5 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Experimental and modeling study of high performance direct carbon solid oxide fuel cell with in situ catalytic steam-carbon gasification reaction

    Xu, H., Chen, B., Zhang, H., Tan, P., Yang, G., Irvine, J. T. S. & Ni, M., 1 Apr 2018, In : Journal of Power Sources. 382, p. 135-143 9 p.

    Research output: Contribution to journalArticle

  2. Improved electrochemical performance of LiCoPO4 using eco-friendly aqueous binders

    Kim, E. J., Yue, X., Irvine, J. T. S. & Armstrong, A. R., 1 Nov 2018, In : Journal of Power Sources. 403, p. 11-19 9 p.

    Research output: Contribution to journalArticle

  3. Mechanism of enhanced performance on a hybrid direct carbon fuel cell using sawdust biofuels

    Li, S., Jiang, C., Liu, J., Tao, H., Meng, X., Connor, P., Hui, J., Wang, S., Ma, J. & Irvine, J. T. S., 15 Apr 2018, In : Journal of Power Sources. 383, p. 10-16 7 p.

    Research output: Contribution to journalArticle

  4. Infiltrated La0.4Sr0.4Fe0.03Ni0.03Ti0.94O3 based anodes for all ceramic and metal supported solid oxide fuel cells

    Nielsen, J., Persson, Å. H., Sudireddy, B. R., Irvine, J. T. S. & Thydén, K., 31 Dec 2017, In : Journal of Power Sources. 372, p. 99-106 8 p.

    Research output: Contribution to journalArticle

ID: 249094106