Skip to content

Research at St Andrews

Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation

Research output: Chapter in Book/Report/Conference proceedingChapter

Author(s)

Juan Carlos Ruiz-Morales, Jesús Canales-Vázquez, Cristian Savaniu, David Marrero-López, Wuzong Zhou, John T.S. Irvine

School/Research organisations

Abstract

Point defects largely govern the electrochemical properties of oxides: at low defect concentrations, conductivity increases with concentration; however, at higher concentrations, defect–defect interactions start to dominate1,2. Thus, in searching for electrochemically active materials for fuel cell anodes, high defect concentration is generally avoided. Here we describe an oxide anode formed from lanthanum-substituted strontium titanate (La-SrTiO3) in which we control the oxygen stoichiometry in order to break down the extended defect intergrowth regions and create phaseswith considerable disordered oxygen defects.We substitute Ti in these phases with Ga and Mn to induce redox activity and allow more flexible coordination. The material demonstrates impressive fuel cell performance using wet hydrogen at 950 °C. It is also important for fuel cell technology to achieve efficient electrode operation with different hydrocarbon fuels3,4, although such fuels are more demanding than pure hydrogen. The best anode materials to date—Ni-YSZ (yttriastabilized zirconia) cermets5—suffer some disadvantages related to low tolerance to sulphur6, carbon build-up when using hydrocarbon fuels7(though device modifications and lower temperature operation can avoid this8,9) and volume instability on redox cycling. Our anode material is very active for methane oxidation at high temperatures, with open circuit voltages in excess of 1.2V. The materials design concept that we use here could lead to devices that enable more-efficient energy extraction from fossil fuels and carbon-neutral fuels.

Close

Details

Original languageEnglish
Title of host publicationMaterials for Sustainable Energy
Subtitle of host publicationA Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group
PublisherWorld Scientific Publishing Co. Pte Ltd
Pages251-254
Number of pages4
ISBN (Electronic)9789814317665
ISBN (Print)9814317640, 9789814317641
DOIs
Publication statusPublished - 1 Jan 2010

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. An FeNbO4-based oxide anode for a solid oxide fuel cell (SOFC)

    Liu, X., Xie, D., Irvine, J. T. S., Ni, J. & Ni, C., 11 Jan 2020, In : Electrochimica Acta. In press, 135692.

    Research output: Contribution to journalArticle

  2. A B-site doped perovskite ferrate for efficient anode of a solid oxide fuel cell with in situ metal exsolution

    Ni, C., Zeng, Q., He, D., Peng, L., Xie, D., Irvine, J. T. S., Duan, S. & Ni, J., 21 Dec 2019, In : Journal of Materials Chemistry A. 7, 47, p. 26944-26953 10 p.

    Research output: Contribution to journalArticle

  3. Effect of oxygen coordination environment of Ca-Mn oxides on catalytic performance of Pd supported catalysts for aerobic oxidation of 5-hydroxymethyl-2-furfural

    Yang, J., Yu, H., Wang, Y., Qi, F., Liu, H., Lou, L-L., Yu, K., Zhou, W. & Liu, S., 7 Dec 2019, In : Catalysis Science & Technology. 9, 23, p. 6659-6668

    Research output: Contribution to journalArticle

  4. Asymmetric oxygen vacancies: the intrinsic redox active sites in metal oxide catalysts

    Yu, K., Lou, L-L., Liu, S. & Zhou, W., 5 Dec 2019, In : Advanced Science . Early View, 8 p., 1901970.

    Research output: Contribution to journalArticle

  5. Lattice strain-enhanced exsolution of nanoparticles in thin films

    Han, H., Park, J., Nam, S. Y., Choi, G. M., Parkin, S. S. P., Jang, H. M. & Irvine, J. T. S., 1 Dec 2019, In : Nature Communications. 10, 8 p., 1471.

    Research output: Contribution to journalArticle

ID: 255835690

Top