Skip to content

Research at St Andrews

Dive heart rate in harbour porpoises is influenced by exercise and expectations

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Abstract

The dive response, a decrease in heart rate (ƒH) and peripheral vasoconstriction, is the key mechanism allowing breath-hold divers to perform long duration dives. This pronounced cardiovascular response to diving has been investigated intensely in pinnipeds, but comparatively little is known for cetaceans, in particular in ecologically relevant settings. Here we studied the dive ƒH response in one the smallest cetaceans, the harbour porpoise (Phocoena phocoena). We used a novel multi-sensor data logger to record dive behaviour, ƒH, ventilations and feeding events in three trained porpoises, providing the first evaluation of cetacean ƒH regulation while performing a variety of natural behaviours, including prey capture. We predicted that tagged harbour porpoises would exhibit a decrease in ƒH in all dives, but the degree of bradycardia would be influenced by dive duration and activity, i.e., the dive ƒH response will be exercise modulated. In all dives, ƒH decreased compared to surface rates by at least 50% (mean maximum surface=173 beats min−1, mean minimum dive=50 beats min−1); however, dive ƒH was approximately 10 beats min−1 higher in active dives due to a slower decrease in ƒH and more variable ƒH during pursuit of prey. We show that porpoises exhibit the typical breath-hold diver bradycardia during aerobic dives and that the heart rate response is modulated by exercise and dive duration; however, other variables such as expectations and individual differences are equally important in determining diving heart rate.
Close

Details

Original languageEnglish
Article numberjeb168740
JournalJournal of Experimental Biology
Volume221
Issue number1
Early online date9 Nov 2017
DOIs
Publication statusPublished - 9 Jan 2018

    Research areas

  • Diving physiology, Bradycardia, Dive response, Harbour porpoise, Heart rate regulation, Exercise

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by journal

  1. Acceleration-triggered animal-borne videos show a dominance of fish in the diet of female northern elephant seals

    Yoshino, K., Takahashi, A., Adachi, T., Costa, D. P., Robinson, P. W., Peterson, S. H., Hückstädt, L. A., Holser, R. R. & Naito, Y., 28 Feb 2020, In : Journal of Experimental Biology. 223, 5, 9 p., jeb212936.

    Research output: Contribution to journalArticle

  2. Diving apart together: call propagation in diving long-finned pilot whales

    Kok, A. C. M., van Kolfshoten, L., Campbell, J. A., von Benda-Beckmann, A. M., Miller, P. J. O., Slabbekoorn, H. & Visser, F., 27 May 2020, In : Journal of Experimental Biology. 223, 10, 11 p., jeb207878.

    Research output: Contribution to journalArticle

  3. Dynamic biosonar adjustment strategies in deep-diving Risso's dolphins driven partly by prey evasion

    Jensen, F. H., Keller, O. A., Tyack, P. L. & Visser, F., Feb 2020, In : Journal of Experimental Biology. 223, 9 p., jeb216283.

    Research output: Contribution to journalArticle

  4. Energy compensation and received echo level dynamics in constant-frequency bats during active target approaches

    Stidsholt, L., Müller, R., Beedholm, K., Ma, H., Johnson, M. & Madsen, P. T., 28 Jan 2020, In : Journal of Experimental Biology. 223, 2, 9 p., jeb217109.

    Research output: Contribution to journalArticle

  5. Flash and grab: deep-diving southern elephant seals trigger anti-predator flashes in bioluminescent prey

    Goulet, P., Guinet, C., Campagna, C., Campagna, J., Tyack, P. L. & Johnson, M., 19 May 2020, In : Journal of Experimental Biology. 223, 10, 11 p., jeb.222810.

    Research output: Contribution to journalArticle

ID: 251678569

Top