Skip to content

Research at St Andrews

Dive heart rate in harbour porpoises is influenced by exercise and expectations

Research output: Contribution to journalArticlepeer-review


Open Access permissions



The dive response, a decrease in heart rate (ƒH) and peripheral vasoconstriction, is the key mechanism allowing breath-hold divers to perform long duration dives. This pronounced cardiovascular response to diving has been investigated intensely in pinnipeds, but comparatively little is known for cetaceans, in particular in ecologically relevant settings. Here we studied the dive ƒH response in one the smallest cetaceans, the harbour porpoise (Phocoena phocoena). We used a novel multi-sensor data logger to record dive behaviour, ƒH, ventilations and feeding events in three trained porpoises, providing the first evaluation of cetacean ƒH regulation while performing a variety of natural behaviours, including prey capture. We predicted that tagged harbour porpoises would exhibit a decrease in ƒH in all dives, but the degree of bradycardia would be influenced by dive duration and activity, i.e., the dive ƒH response will be exercise modulated. In all dives, ƒH decreased compared to surface rates by at least 50% (mean maximum surface=173 beats min−1, mean minimum dive=50 beats min−1); however, dive ƒH was approximately 10 beats min−1 higher in active dives due to a slower decrease in ƒH and more variable ƒH during pursuit of prey. We show that porpoises exhibit the typical breath-hold diver bradycardia during aerobic dives and that the heart rate response is modulated by exercise and dive duration; however, other variables such as expectations and individual differences are equally important in determining diving heart rate.


Original languageEnglish
Article numberjeb168740
JournalJournal of Experimental Biology
Issue number1
Early online date9 Nov 2017
Publication statusPublished - 9 Jan 2018

    Research areas

  • Diving physiology, Bradycardia, Dive response, Harbour porpoise, Heart rate regulation, Exercise

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by journal

  1. Echolocation click parameters and biosonar behaviour of the dwarf sperm whale (Kogia sima)

    Malinka, C. E., Tønnesen, P., Dunn, C. A., Claridge, D. E., Gridley, T., Elwen, S. H. & Teglberg Madsen, P., 26 Mar 2021, In: Journal of Experimental Biology. 224, 6, 16 p., jeb240689.

    Research output: Contribution to journalArticlepeer-review

  2. Improving estimates of diving lung volume in air-breathing marine vertebrates

    Fahlman, A., Sato, K. & Miller, P., Jun 2020, In: Journal of Experimental Biology. 223, 7 p., jeb216846.

    Research output: Contribution to journalReview articlepeer-review

  3. Diving apart together: call propagation in diving long-finned pilot whales

    Kok, A. C. M., van Kolfshoten, L., Campbell, J. A., von Benda-Beckmann, A. M., Miller, P. J. O., Slabbekoorn, H. & Visser, F., 27 May 2020, In: Journal of Experimental Biology. 223, 10, 11 p., jeb207878.

    Research output: Contribution to journalArticlepeer-review

  4. Flash and grab: deep-diving southern elephant seals trigger anti-predator flashes in bioluminescent prey

    Goulet, P., Guinet, C., Campagna, C., Campagna, J., Tyack, P. L. & Johnson, M., 19 May 2020, In: Journal of Experimental Biology. 223, 10, 11 p., jeb.222810.

    Research output: Contribution to journalArticlepeer-review

  5. When the noise goes on: received sound energy predicts sperm whale responses to both intermittent and continuous navy sonar

    Isojunno, S., Wensveen, P., Lam, F-P., Kvadsheim, P., von Brenda-Beckmann, A. M., Martín López, L. M., Kleivane, L., Siegal, E. & Miller, P., 8 Apr 2020, In: Journal of Experimental Biology. 223, 7, 10 p., jeb219741.

    Research output: Contribution to journalArticlepeer-review

ID: 251678569