Skip to content

Research at St Andrews

Droplet microfluidics platform for highly sensitive and quantitative detection of malaria-causing plasmodium parasites based on enzyme activity measurement

Research output: Contribution to journalArticle



Sissel Juul, Christine J F Nielsen, Rodrigo Labouriau, Amit Roy, Cinzia Tesauro, Pia W. Jensen, Charlotte Harmsen, Emil L. Kristoffersen, Ya Ling Chiu, Rikke Frohlich, Paola Fiorani, Janet Cox-Singh, David Tordrup, Jorn Koch, Anne Lise Bienvenu, Alessandro Desideri, Stephane Picot, Eskild Petersen, Kam W. Leong, Yi Ping Ho & 2 others Magnus Stougaard, Birgitta R. Knudsen

School/Research organisations


We present an attractive new system for the specific and sensitive detection of the malaria-causing Plasmodium parasites. The system relies on isothermal conversion of single DNA cleavage-ligation events catalyzed specifically by the Plasmodium enzyme topoisomerase I to micrometer-sized products detectable at the single-molecule level. Combined with a droplet microfluidics lab-on-a-chip platform, this design allowed for sensitive, specific, and quantitative detection of all human-malaria-causing Plasmodium species in single drops of unprocessed blood with a detection limit of less than one parasite/μL. Moreover, the setup allowed for detection of Plasmodium parasites in noninvasive saliva samples from infected patients. During recent years malaria transmission has declined worldwide, and with this the number of patients with low-parasite density has increased. Consequently, the need for accurate detection of even a few parasites is becoming increasingly important for the continued combat against the disease. We believe that the presented droplet microfluidics platform, which has a high potential for adaptation to point-of-care setups suitable for low-resource settings, may contribute significantly to meet this demand. Moreover, potential future adaptation of the presented setup for the detection of other microorganisms may form the basis for the development of a more generic platform for diagnosis, fresh water or food quality control, or other purposes within applied or basic science.



Original languageEnglish
Pages (from-to)10676-10683
Number of pages8
JournalACS Nano
Issue number12
Publication statusPublished - 21 Dec 2012

    Research areas

  • diagnosis, droplet microfluidics, enzyme activity detection, lab-on-a-chip, malaria, rolling-circle amplification

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Plasmodium knowlesi: experimental model, zoonotic pathogen and golden opportunity?

    Cox-Singh, J., Jan 2018, In : Parasitology. 145, 1, p. 1-5 4 p.

    Research output: Contribution to journalEditorial

  2. Human infections with Plasmodium knowlesi - zoonotic malaria

    Millar, S. B. & Cox Singh, J., Jul 2015, In : Clinical Microbiology and Infection. 21, 7, p. 640-648

    Research output: Contribution to journalArticle

  3. Plasmodium knowlesi: from severe zoonosis to animal model

    Cox Singh, J. & Culleton, R., Jun 2015, In : Trends in Parasitology. 31, 6

    Research output: Contribution to journalArticle

  4. Plasmodium knowlesi genome sequences from clinical isolates reveal extensive genomic dimorphism

    Monsanto Pinheiro, M., Ahmed, M. A., Millar, S. B., Sanderson, T., Otto, T. D., Lu, W. C., Krishna, S., Rayner, J. C. & Cox-Singh, J., 1 Apr 2015, In : PLoS One. 10, 4, 16 p., e0121303.

    Research output: Contribution to journalArticle

  5. Plasmodium knowlesi – an emerging pathogen

    Ahmed, M. A. & Cox Singh, J., Apr 2015, In : ISBT Science Series. 10, S1, p. 134-140

    Research output: Contribution to journalReview article

Related by journal

  1. Patterning multicolor hybrid perovskite films via top-down lithography

    Harwell, J., Burch, J., Fikouras, A., Gather, M. C., Di Falco, A. & Samuel, I. D. W., 23 Apr 2019, In : ACS Nano. 13, 4, p. 3823–3829

    Research output: Contribution to journalArticle

  2. An organic vortex laser

    Stellinga, D., Pietrzyk, M., Glackin, J. M. E., Wang, Y., Bansal, A. K., Turnbull, G. A., Dholakia, K., Samuel, I. D. W. & Krauss, T., 27 Mar 2018, In : ACS Nano. 12, 3, p. 2389-2394 6 p.

    Research output: Contribution to journalArticle

  3. In situ patterning of ultrasharp dopant profiles in silicon

    Cooil, S. P., Mazzola, F., Klemm, H. W., Peschel, G., Niu, Y. R., Zakharov, A. A., Simmons, M. Y., Schmidt, T., Evans, D. A., Miwa, J. A. & Wells, J. W., 28 Feb 2017, In : ACS Nano. 11, 2, p. 1683-1688 6 p.

    Research output: Contribution to journalArticle

  4. Electric-field-driven direct desulfurization

    Borca, B., Michnowicz, T., Petuya, R., Pristl, M., Schendel, V., Pentegov, I., Kraft, U., Klauk, H., Wahl, P., Gutzler, R., Arnau, A., Schlickum, U. & Kern, K., 23 May 2017, In : ACS Nano. 11, 5, p. 4703–4709

    Research output: Contribution to journalArticle

  5. Emergent properties of an organic semiconductor driven by its molecular chirality

    Yang, Y., Rice, B., Shi, X., Brandt, J. R., Correa da Costa, R., Hedley, G. J., Smilgies, D-M., Frost, J. M., Samuel, I. D. W., Otero-de-la-Roza, A., Johnson, E. R., Jelfs, K. E., Nelson, J., Campbell, A. J. & Fuchter, M. J., 22 Aug 2017, In : ACS Nano. 11, 8, p. 8329-8338 10 p.

    Research output: Contribution to journalArticle

ID: 251603410