Skip to content

Research at St Andrews

Durability of La0.20Sr0.25Ca0.45TiO3-based SOFC anodes: identifying sources of degradation in Ni and Pt/ceria co-impregnated fuel electrode microstructures

Research output: Contribution to journalArticlepeer-review

DOI

Open Access Status

  • Embargoed (until 8/04/22)

Author(s)

Robert Price, Ueli Weissen, Jan G. Grolig, Mark Cassidy, Andreas Mai, John T. S. Irvine

School/Research organisations

Abstract

Solid oxide fuel cells (SOFC) comprising LSM-YSZ/LSM composite cathodes, 6ScSZ electrolytes and La0.20Sr0.25Ca0.45TiO3 (LSCTA−) anode ‘backbone’ microstructures were prepared using thick-film ceramic processing techniques. Activation and decoration of the LSCTA− anode ‘backbone’ with electrocatalytic coatings of cerium-based oxides and metallic Ni or Pt particles was achieved using the technique of catalyst co-impregnation. SOFC containing Ni/CGO, Ni/CeO2 and Pt/CGO impregnated LSCTA anodes were tested up to ∼1000 hours by the Swiss SOFC manufacturer: HEXIS, under realistic operating conditions, including 15 redox, thermo and thermoredox cycles. The voltage degradation rates observed over the entire test period for the SOFC containing the Ni/CGO, Ni/CeO2 and Pt/CGO impregnated LSCTA− anodes were 14.9%, 7.7% and 13.4%, respectively. Post-mortem microscopic analyses indicated that CeO2 formed ubiquitous coatings upon the LSCTA− anode microstructure, allowing retention of a high population density of metallic (Ni) particles, whilst CGO formed ‘islands’ upon the microstructure and some agglomerates within the pores, leading to more facile agglomeration of metallic (Ni and Pt) nanoparticles. Correlation of the post-mortem microscopy with AC impedance analysis revealed that the agglomeration of metallic catalyst resulted in an increase in the high-frequency anode polarisation resistance, whilst agglomeration of the ceria-based component directly resulted in the development of a low-frequency process that may be attributed to combined contributions from gas conversion and chemical capacitance.
Close

Details

Original languageEnglish
Pages (from-to)10404-10418
JournalJournal of Materials Chemistry A
Volume9
Issue number16
Early online date8 Apr 2021
DOIs
Publication statusPublished - 28 Apr 2021

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Platinum incorporation into titanate perovskites to deliver emergent active and stable platinum nanoparticles

    Kothari, M., Jeon, Y., Miller, D. N., Pascui, A. E., Wails, D., Ramos, S., Chadwick, A. & Irvine, J. T. S., 24 May 2021, In: Nature Chemistry.

    Research output: Contribution to journalArticlepeer-review

  2. Time-resolved in-situ X-ray diffraction study of CaO and CaO:Ca3Al2O6 composite catalysts for biodiesel production

    Bonaccorso, A. D., Papargyriou, D., Fuente Cuesta, A., Magdysyuk, O. V., Michalik, S., Connolley, T., Payne, J. L. & Irvine, J. T. S., 21 May 2021, (Accepted/In press) In: Journal of Physics: Energy. In press

    Research output: Contribution to journalArticlepeer-review

  3. Enhancing electrochemical CO2 reduction using Ce(Mn,Fe)O2 with La(Sr)Cr(Mn)O3 cathode for high-temperature solid oxide electrolysis cells

    Lee, S., Kim, M., Lee, K. T., Irvine, J. T. S. & Shin, T. H., 12 May 2021, In: Advanced Energy Materials. Early View, 12 p., 2100339.

    Research output: Contribution to journalArticlepeer-review

  4. Achieving strong coherency for a composite electrode via one-pot method with enhanced electrochemical performance in reversible solid oxide cells

    Tian, Y., Wang, W., Liu, Y., Naden, A., Xu, M., Wu, S., Chi, B., Pu, J. & Irvine, J. T. S., 19 Mar 2021, In: ACS Catalysis. 11, 6, p. 3704-3714 11 p.

    Research output: Contribution to journalArticlepeer-review

  5. Alkaline modified A-site deficient perovskite catalyst surface with exsolved nanoparticles and functionality in biomass valorisation

    Umar, A., Neagu, D. & Irvine, J. T. S., 1 Mar 2021, In: Biofuel Research Journal. 8, 1, p. 1342-1350 9 p.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Bandgap bowing in a zero-dimensional hybrid halide perovskite derivative: spin-orbit coupling: versus lattice strain

    Chatterjee, S., Payne, J., Irvine, J. T. S. & Pal, A. J., 28 Feb 2020, In: Journal of Materials Chemistry A. 8, 8, p. 4416-4427 12 p.

    Research output: Contribution to journalArticlepeer-review

  2. Boosting CO2 electrolysis performance: via calcium-oxide-looping combined with in situ exsolved Ni-Fe nanoparticles in a symmetrical solid oxide electrolysis cell

    Tian, Y., Liu, Y., Naden, A., Jia, L., Xu, M., Cui, W., Chi, B., Pu, J., Irvine, J. T. S. & Li, J., 14 Aug 2020, In: Journal of Materials Chemistry A. 8, 30, p. 14895-14899 5 p.

    Research output: Contribution to journalArticlepeer-review

  3. Hiding extra-framework cations in zeolites L and Y by internal ion exchange and its effect on CO2 adsorption

    Lozinska, M. M., Miller, D. N., Brandani, S. & Wright, P. A., 23 Jan 2020, In: Journal of Materials Chemistry A. Advance Article

    Research output: Contribution to journalArticlepeer-review

  4. Lithiation of V2O3(SO4)2 - a flexible insertion host

    Linnell, S. F., Payne, J. L., Pickup, D. M., Chadwick, A. V., Armstrong, A. R. & Irvine, J. T. S., 7 Oct 2020, In: Journal of Materials Chemistry A. 8, 37, p. 19502-19512 11 p.

    Research output: Contribution to journalArticlepeer-review

ID: 273967508

Top