Skip to content

Research at St Andrews

Early diagenetic imprint on temperature proxies in holocene corals: a case study from French Polynesia

Research output: Contribution to journalArticlepeer-review

Standard

Early diagenetic imprint on temperature proxies in holocene corals : a case study from French Polynesia. / Rashid, Rashid; Eisenhauer, Anton; Liebetrau, Volker; Fietzke, Jan; Böhm, Florian; Wall, Marlene; Krause, Stefan; Rüggeberg, Andres; Dullo, Wolf-Christian; Jurikova, Hana; Samankassou, Elias; Lazar, Boaz.

In: Frontiers in Earth Science, Vol. 8, 301, 22.07.2020.

Research output: Contribution to journalArticlepeer-review

Harvard

Rashid, R, Eisenhauer, A, Liebetrau, V, Fietzke, J, Böhm, F, Wall, M, Krause, S, Rüggeberg, A, Dullo, W-C, Jurikova, H, Samankassou, E & Lazar, B 2020, 'Early diagenetic imprint on temperature proxies in holocene corals: a case study from French Polynesia', Frontiers in Earth Science, vol. 8, 301. https://doi.org/10.3389/feart.2020.00301

APA

Rashid, R., Eisenhauer, A., Liebetrau, V., Fietzke, J., Böhm, F., Wall, M., Krause, S., Rüggeberg, A., Dullo, W-C., Jurikova, H., Samankassou, E., & Lazar, B. (2020). Early diagenetic imprint on temperature proxies in holocene corals: a case study from French Polynesia. Frontiers in Earth Science, 8, [301]. https://doi.org/10.3389/feart.2020.00301

Vancouver

Rashid R, Eisenhauer A, Liebetrau V, Fietzke J, Böhm F, Wall M et al. Early diagenetic imprint on temperature proxies in holocene corals: a case study from French Polynesia. Frontiers in Earth Science. 2020 Jul 22;8. 301. https://doi.org/10.3389/feart.2020.00301

Author

Rashid, Rashid ; Eisenhauer, Anton ; Liebetrau, Volker ; Fietzke, Jan ; Böhm, Florian ; Wall, Marlene ; Krause, Stefan ; Rüggeberg, Andres ; Dullo, Wolf-Christian ; Jurikova, Hana ; Samankassou, Elias ; Lazar, Boaz. / Early diagenetic imprint on temperature proxies in holocene corals : a case study from French Polynesia. In: Frontiers in Earth Science. 2020 ; Vol. 8.

Bibtex - Download

@article{d671442772b0468b86979f55ec7dfe3d,
title = "Early diagenetic imprint on temperature proxies in holocene corals: a case study from French Polynesia",
abstract = "Coral-based reconstructions of sea surface temperatures (SSTs) using Sr/Ca, U/Ca and δ18O are important tools for quantitative analysis of past climate variabilities. However, post-depositional alteration of coral aragonite, particularly early diagenesis, restrict the accuracy of calibrated proxies even on young corals. Considering the diagenetic effects, we present new Mid to Late Holocene SST reconstructions on well-dated (U/Th: ∼70 yr to 5.4 ka) fossil Porites sp. collected from the Society Islands, French Polynesia. For few corals, quality pre-screening routines revealed the presence of secondary aragonite needles inside primary pore space, resulting in a mean increase in Sr/Ca ratios between 5-30%, in contrast to the massive skeletal parts. Characterized by a Sr/Ca above 10 mmol/mol, we interpret this value as the threshold between diagenetically altered and unaltered coral material. At a high-resolution, observed intra-skeletal variability of 5.4 to 9.9 mmol/mol probably reflects the physiological control of corals over their trace metal uptake, and individual variations controlled by CaCO3– precipitation rates. Overall, the Sr/Ca, U/Ca and δ18O trends are well correlated, but we observed a significant offset up to ± 7°C among the proxies on derived palaeo-SST estimates. It appears that the related alteration process tends to amplify temperature extremes, resulting in increased SST-U/Ca and SST-Sr/Ca gradients, and consequently their apparent temperature sensitivities. A relative SST reconstruction is still feasible by normalizing our records to their individual mean value defined as ΔSST. This approach shows that ΔSST records derived from different proxies agree with an amplitudinal variability of up to ± 2°C with respect to their Holocene mean value. Higher ΔSST values than the mean SSTs (Holocene warm periods) were recorded from ∼1.8 to ∼2.8 ka (Interval I), ∼3.7 to 4.0 ka (Interval III) and before ∼5 ka, while lower ΔSST values (Holocene cold periods, Interval II and IV) were recorded in between. The ensuing SST periodicity of ∼1.5 ka in the Society Islands record is in line with the solar activity reconstructed from 10Be and 14C production (Vonmoos et al., 2006), emphasizing the role of solar activity on climate variability during the Late Holocene.",
keywords = "Sea surface temperature (SST), Chemical heterogeneities, Scleractinian corals, Diagenetic alterations, Biomineralisation and calcification, Late holocene climate",
author = "Rashid Rashid and Anton Eisenhauer and Volker Liebetrau and Jan Fietzke and Florian B{\"o}hm and Marlene Wall and Stefan Krause and Andres R{\"u}ggeberg and Wolf-Christian Dullo and Hana Jurikova and Elias Samankassou and Boaz Lazar",
note = "This study was supported through funds from ESF/CHECKREEF project (EI272/22-1 to AE; DU129/141-1 to W-CD; 20MA21-115944 and 200020-140618 to ES), by the collaborative research initiative CHARON (DFG Forschergruppe 1644 – Phase II) funded by the German Research Foundation, and by the GEOMAR Helmholtz Centre for Ocean Research Kiel. The Ph.D. program of RR was financially supported by the Tanzania Ministry of Education and Vocational Training (MoEVT) in collaboration with DAAD (Deutscher Akademischer Austauschdienst) fellowship. AR acknowledges support from Swiss National Science Foundation Project Number SNF 200021_149247.",
year = "2020",
month = jul,
day = "22",
doi = "10.3389/feart.2020.00301",
language = "English",
volume = "8",
journal = "Frontiers in Earth Science",
issn = "2296-6463",
publisher = "Frontiers Media S. A.",

}

RIS (suitable for import to EndNote) - Download

TY - JOUR

T1 - Early diagenetic imprint on temperature proxies in holocene corals

T2 - a case study from French Polynesia

AU - Rashid, Rashid

AU - Eisenhauer, Anton

AU - Liebetrau, Volker

AU - Fietzke, Jan

AU - Böhm, Florian

AU - Wall, Marlene

AU - Krause, Stefan

AU - Rüggeberg, Andres

AU - Dullo, Wolf-Christian

AU - Jurikova, Hana

AU - Samankassou, Elias

AU - Lazar, Boaz

N1 - This study was supported through funds from ESF/CHECKREEF project (EI272/22-1 to AE; DU129/141-1 to W-CD; 20MA21-115944 and 200020-140618 to ES), by the collaborative research initiative CHARON (DFG Forschergruppe 1644 – Phase II) funded by the German Research Foundation, and by the GEOMAR Helmholtz Centre for Ocean Research Kiel. The Ph.D. program of RR was financially supported by the Tanzania Ministry of Education and Vocational Training (MoEVT) in collaboration with DAAD (Deutscher Akademischer Austauschdienst) fellowship. AR acknowledges support from Swiss National Science Foundation Project Number SNF 200021_149247.

PY - 2020/7/22

Y1 - 2020/7/22

N2 - Coral-based reconstructions of sea surface temperatures (SSTs) using Sr/Ca, U/Ca and δ18O are important tools for quantitative analysis of past climate variabilities. However, post-depositional alteration of coral aragonite, particularly early diagenesis, restrict the accuracy of calibrated proxies even on young corals. Considering the diagenetic effects, we present new Mid to Late Holocene SST reconstructions on well-dated (U/Th: ∼70 yr to 5.4 ka) fossil Porites sp. collected from the Society Islands, French Polynesia. For few corals, quality pre-screening routines revealed the presence of secondary aragonite needles inside primary pore space, resulting in a mean increase in Sr/Ca ratios between 5-30%, in contrast to the massive skeletal parts. Characterized by a Sr/Ca above 10 mmol/mol, we interpret this value as the threshold between diagenetically altered and unaltered coral material. At a high-resolution, observed intra-skeletal variability of 5.4 to 9.9 mmol/mol probably reflects the physiological control of corals over their trace metal uptake, and individual variations controlled by CaCO3– precipitation rates. Overall, the Sr/Ca, U/Ca and δ18O trends are well correlated, but we observed a significant offset up to ± 7°C among the proxies on derived palaeo-SST estimates. It appears that the related alteration process tends to amplify temperature extremes, resulting in increased SST-U/Ca and SST-Sr/Ca gradients, and consequently their apparent temperature sensitivities. A relative SST reconstruction is still feasible by normalizing our records to their individual mean value defined as ΔSST. This approach shows that ΔSST records derived from different proxies agree with an amplitudinal variability of up to ± 2°C with respect to their Holocene mean value. Higher ΔSST values than the mean SSTs (Holocene warm periods) were recorded from ∼1.8 to ∼2.8 ka (Interval I), ∼3.7 to 4.0 ka (Interval III) and before ∼5 ka, while lower ΔSST values (Holocene cold periods, Interval II and IV) were recorded in between. The ensuing SST periodicity of ∼1.5 ka in the Society Islands record is in line with the solar activity reconstructed from 10Be and 14C production (Vonmoos et al., 2006), emphasizing the role of solar activity on climate variability during the Late Holocene.

AB - Coral-based reconstructions of sea surface temperatures (SSTs) using Sr/Ca, U/Ca and δ18O are important tools for quantitative analysis of past climate variabilities. However, post-depositional alteration of coral aragonite, particularly early diagenesis, restrict the accuracy of calibrated proxies even on young corals. Considering the diagenetic effects, we present new Mid to Late Holocene SST reconstructions on well-dated (U/Th: ∼70 yr to 5.4 ka) fossil Porites sp. collected from the Society Islands, French Polynesia. For few corals, quality pre-screening routines revealed the presence of secondary aragonite needles inside primary pore space, resulting in a mean increase in Sr/Ca ratios between 5-30%, in contrast to the massive skeletal parts. Characterized by a Sr/Ca above 10 mmol/mol, we interpret this value as the threshold between diagenetically altered and unaltered coral material. At a high-resolution, observed intra-skeletal variability of 5.4 to 9.9 mmol/mol probably reflects the physiological control of corals over their trace metal uptake, and individual variations controlled by CaCO3– precipitation rates. Overall, the Sr/Ca, U/Ca and δ18O trends are well correlated, but we observed a significant offset up to ± 7°C among the proxies on derived palaeo-SST estimates. It appears that the related alteration process tends to amplify temperature extremes, resulting in increased SST-U/Ca and SST-Sr/Ca gradients, and consequently their apparent temperature sensitivities. A relative SST reconstruction is still feasible by normalizing our records to their individual mean value defined as ΔSST. This approach shows that ΔSST records derived from different proxies agree with an amplitudinal variability of up to ± 2°C with respect to their Holocene mean value. Higher ΔSST values than the mean SSTs (Holocene warm periods) were recorded from ∼1.8 to ∼2.8 ka (Interval I), ∼3.7 to 4.0 ka (Interval III) and before ∼5 ka, while lower ΔSST values (Holocene cold periods, Interval II and IV) were recorded in between. The ensuing SST periodicity of ∼1.5 ka in the Society Islands record is in line with the solar activity reconstructed from 10Be and 14C production (Vonmoos et al., 2006), emphasizing the role of solar activity on climate variability during the Late Holocene.

KW - Sea surface temperature (SST)

KW - Chemical heterogeneities

KW - Scleractinian corals

KW - Diagenetic alterations

KW - Biomineralisation and calcification

KW - Late holocene climate

U2 - 10.3389/feart.2020.00301

DO - 10.3389/feart.2020.00301

M3 - Article

VL - 8

JO - Frontiers in Earth Science

JF - Frontiers in Earth Science

SN - 2296-6463

M1 - 301

ER -

Related by author

  1. Permian–Triassic mass extinction pulses driven by major marine carbon cycle perturbations

    Jurikova, H., Gutjahr, M., Wallmann, K., Flögel, S., Liebetrau, V., Posenato, R., Angiolini, L., Garbelli, C., Brand, U., Wiedenbeck, M. & Eisenhauer, A., Nov 2020, In: Nature Geoscience. 13, p. 745–750

    Research output: Contribution to journalArticlepeer-review

  2. Incorporation of minor and trace elements into cultured brachiopods: implications for proxy application with new insights from a biomineralisation model

    Jurikova, H., Ippach, M., Liebetrau, V., Gutjahr, M., Krause, S., Büsse, S., Gorb, S. N., Henkel, D., Hiebenthal, C., Schmidt, M., Leipe, T., Laudien, J. & Eisenhauer, A., 1 Oct 2020, In: Geochimica et Cosmochimica Acta. 286, p. 418-440 23 p.

    Research output: Contribution to journalArticlepeer-review

  3. Ocean acidification during the early Toarcian extinction event: evidence from boron isotopes in brachiopods

    Müller, T., Jurikova, H., Gutjahr, M., Tomašových, A., Schlögl, J., Liebetrau, V., Duarte, L., Milovský, R., Suan, G., Mattioli, E., Pittet, B. & Eisenhauer, A., 13 Aug 2020, In: Geology. Early View, 5 p.

    Research output: Contribution to journalArticlepeer-review

  4. Boron in CaCO3 as a record of past seawater carbonate chemistry

    Henehan, M. & Jurikova, H., 1 Nov 2019, PAGES Magazine, 27, 2, p. 58-59.

    Research output: Contribution to specialist publicationArticle

  5. Assessing the biomineralization processes in the shell layers of modern brachiopods from oxygen isotopic composition and elemental ratios: implications for their use as paleoenvironmental proxies

    Rollion-Bard, C., Milner Garcia, S., Burckel, P., Angiolini, L., Jurikova, H., Tomašových, A. & Henkel, D., 5 Oct 2019, In: Chemical Geology. 524, p. 49-66 18 p.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Marine sedimentary carbon stocks of the United Kingdom’s Exclusive Economic Zone

    Smeaton, C., Hunt, C. A., Turrell, W. & Austin, W., 4 Mar 2021, In: Frontiers in Earth Science. 9, 593324.

    Research output: Contribution to journalArticlepeer-review

  2. Reconstructing nitrogen sources to Earth’s earliest biosphere at 3.7 Ga

    Stüeken, E. E., Boocock, T., Szilas, K., Mikhail, S. & Gardiner, N. J., 30 Apr 2021, In: Frontiers in Earth Science. 9, 675726.

    Research output: Contribution to journalArticlepeer-review

  3. Uranium distribution and incorporation mechanism in deep-sea corals: implications for seawater [CO32–] proxies

    Chen, S., Littley, E. F. M., Rae, J. W. B., Charles, C. D. & Adkins, J. F., 23 Mar 2021, In: Frontiers in Earth Science. 9, 14 p., 641327.

    Research output: Contribution to journalArticlepeer-review

  4. Editorial: deep carbon science

    Cardace, D., Bower, D., Daniel, I., Ionescu, A., Mikhail, S., Pistone, M. & Zahirovic, S., 12 Nov 2020, In: Frontiers in Earth Science. 8, 611295.

    Research output: Contribution to journalEditorialpeer-review

ID: 269245309

Top