Skip to content

Research at St Andrews

Early Paleoproterozoic magmatism in the Yangtze Block: evidence from zircon U-Pb ages, Sr-Nd-Hf isotopes and geochemistry of ca. 2.3 Ga and 2.1 Ga granitic rocks in the Phan Si Pan Complex, north Vietnam

Research output: Contribution to journalArticle

Open Access Status

  • Embargoed (until 25/01/20)

Author(s)

Tianyu Zhao, Peter A. Cawood, Jian-Wei Zi, Kai Wang, Qinglai Feng, Quyen Minh Nguyen, Dung My Tran

School/Research organisations

Abstract

Our understanding of the early evolution of the Yangtze Block is limited by the sparsely dispersed nature of pre-Neoproterozoic exposures. New, integrated petrographic, zircon U-Pb age and Hf-Nd isotope analyses, and whole-rock geochemical data for early Paleoproterozoic granites in the Phan Si Pan Complex provides new insights into the evolution of the Yangtze Block as well as its role in the Pre-Nuna supercontinent. LA-ICP-MS zircon U-Pb dating of magmatic zircons from quartz monzonite and gneissic granite yielded 207Pb/206Pb ages of 2306 ± 12 Ma and 2096 ± 15 Ma, respectively. Zircons from the quartz monzonite have εHf(t) values ranging from -4.1 to -2.1, corresponding to TDM2 model ages of 3002–2890 Ma, whereas zircons in the gneissic granite have εHf(t) values between -0.95 and +1.72 and corresponding TDM2 model ages of 2660–2516 Ma, which are consistent with their whole-rock Nd isotope values. Geochemically, the quartz monzonites are I-type granites. Combined with their relatively high Sr/Y ratios and low Y concentrations, as well as fractionated REE patterns with relatively high LREE but low HREE concentrations, they were probably generated by partial melting of the thickened middle-lower crust under elevated temperature. Geochemical and isotopic signatures suggest that the ca. 2.1 Ga gneissic granites are high-K calc-alkaline, ferroan A-type granites formed by partial melting of juvenile crustal source at high temperature and low pressure with little involvement of ancient crustal material. The Phan Si Pan complex has a distinct early Paleoproterozoic crustal evolution history compared with the other crustal provinces of the Yangtze Block, suggesting independent histories that were not unified until the late Paleoproterozoic during the assembly of Nuna. Moreover, the magmatism and tectonic evolution of the north Vietnam region is broadly similar to that of the Arrowsmith Orogen of the Rae craton in Laurentia suggesting a potential spatial linkage. The geologic record of the Yangtze Block does not support an early Paleoproterozoic shutdown of plate tectonics.
Close

Details

Original languageEnglish
JournalPrecambrian Research
VolumeIn press
Early online date25 Jan 2019
DOIs
Publication statusE-pub ahead of print - 25 Jan 2019

    Research areas

  • Zircon U-Pb-Hf isotopes, Geochemistry, Early Paleoproterozoic, Yangtze Block, Nuna supercontinent

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Neoarchean and Paleoproterozoic K-rich granites in the Phan Si Pan Complex, north Vietnam: constraints on the early crustal evolution of the Yangtze Block

    Zhao, T., Cawood, P. A., Wang, K., Zi, J-W., Feng, Q., Nguyen, Q. M. & Tran, D. M., 15 Sep 2019, In : Precambrian Research. 332, 105395.

    Research output: Contribution to journalArticle

  2. Jiangnan Orogen, South China: a ~970–820 Ma Rodinia margin accretionary belt

    Yao, J., Cawood, P. A., Shu, L. & Zhao, G., Sep 2019, In : Earth Science Reviews. 196

    Research output: Contribution to journalArticle

  3. Implications of 770 Ma Rhyolitic Tuffs, eastern South China Craton in constraining the tectonic setting of the Nanhua Basin

    Qi, L., Xu, Y., Cawood, P. A., Wang, W. & Du, Y., Jan 2019, In : Lithos. 324-325, p. 842-858

    Research output: Contribution to journalArticle

Related by journal

  1. 1.99 Ga mafic magmatism in the Rona terrane of the Lewisian Gneiss Complex in Scotland

    Baker, T. R., Prave, A. R. & Spencer, C. J., Aug 2019, In : Precambrian Research. 329, p. 224-231

    Research output: Contribution to journalArticle

  2. A marine origin for the late Mesoproterozoic Copper Harbor and Nonesuch Formations of the Midcontinent Rift of Laurentia

    Jones, S. M., Prave, A. R., Raub, T. D., Cloutier, J., Stüeken, E. E., Rose, C. V., Linnekogel, S. & Nazarov, K., 9 Nov 2019, In : Precambrian Research. 336, 105510.

    Research output: Contribution to journalArticle

  3. A window into an ancient backarc? The magmatic and metamorphic history of the Fraser Zone, Western Australia

    Glasson, K. J., Johnson, T. E., Kirkland, C. L., Gardiner, N. J., Clark, C., Blereau, E., Hartnady, M. I. H., Spaggiari, C. & Smithies, H., Apr 2019, In : Precambrian Research. 323, p. 55-69 15 p.

    Research output: Contribution to journalArticle

  4. Low δ18O rocks in the Belomorian belt, NW Russia, and Scourie dikes, NW Scotland: a record of ancient meteoric water captured by the early Paleoproterozoic global mafic magmatism

    Zakharov, D. O., Bindeman, I. N., Serebryakov, N. S., Prave, A. R., Azimov, P. Y. & Babarina, I. I., 1 Oct 2019, In : Precambrian Research. 333, 105431.

    Research output: Contribution to journalArticle

ID: 257544792

Top