Skip to content

Research at St Andrews

Effect of oxygen coordination environment of Ca-Mn oxides on catalytic performance of Pd supported catalysts for aerobic oxidation of 5-hydroxymethyl-2-furfural

Research output: Contribution to journalArticlepeer-review

DOI

Open Access permissions

Open

Author(s)

Jie Yang, Haochen Yu, Yanbing Wang, Fuyan Qi, Haodong Liu, Lan-Lan Lou, Kai Yu, Wuzong Zhou, Shuangxi Liu

School/Research organisations

Abstract

Four types of Ca-Mn oxides, including CaMnO3, CaMn2O4, CaMn3O6 and Ca2Mn3O8, have been prepared and used as supports for Pd nanoparticles. The oxygen activation capacity of these oxides and the catalytic activity of the oxide supported Pd nanocatalysts have been investigated using the aerobic oxidation of 5-hydroxymethyl-2-furfural as a model reaction. It is found that the local coordination environment of lattice oxygen sites plays a crucial role on their redox property and charge transfer ability from Pd nanoparticles to the support. In particular, the Ca-Mn oxide with lower oxygen coordination number, weaker metal-oxygen bonds and tunnel crystal structure, e.g. CaMn2O4, exhibits promoted oxygen activation capacity, and stronger electron transfer ability. Consequently, Pd/CaMn2O4 exhibits the highest catalytic activity among these catalysts, providing a promising yield of 2,5-furandicarboxylic acid. This work may shed light on the future investigation on the design of local structure of active oxygen sites in oxides or oxide supported catalysts for redox reactions.
Close

Details

Original languageEnglish
Pages (from-to)6659-6668
JournalCatalysis Science & Technology
Volume9
Issue number23
Early online date14 Oct 2019
DOIs
Publication statusPublished - 7 Dec 2019

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Incommensurate-commensurate transition in the geometric ferroelectric LaTaO4

    Howieson, G. W., Wu, S., Gibbs, A. S., Zhou, W., Scott, J. F. & Morrison, F. D., 4 Nov 2020, In: Advanced Functional Materials. 30, 45, 10 p., 2004667.

    Research output: Contribution to journalArticlepeer-review

  2. Efficient luminescence from CsPbBr3 nanoparticles embedded in Cs4PbBr6

    Bao, Z., Tseng, Y. J., You, W., Zheng, W., Chen, X., Mahlik, S., Lazarowska, A., Lesniewski, T., Grinberg, M., Ma, C., Sun, W., Zhou, W., Liu, R. S. & Attfield, J. P., 17 Sep 2020, In: Journal of Physical Chemistry Letters. 11, 18, p. 7637-7642 6 p.

    Research output: Contribution to journalArticlepeer-review

  3. Surface trace doping of Na enhancing structure stability and adsorption properties of Li1.6Mn1.6O4 for Li+ recovery

    Qian, F., Zhao, B., Guo, M., Wu, Z., Zhou, W. & Liu, Z., 13 Aug 2020, In: Separation and Purification Technology. In press

    Research output: Contribution to journalArticlepeer-review

  4. Crepe cake structured layered double hydroxide/sulfur/graphene as a pPositive electrode material for Li-S batteries

    Liu, S., Zhang, X., Wu, S., Chen, X., Yang, X., Yue, W., Lu, J. & Zhou, W., 15 Jun 2020, In: ACS Nano. Articles ASAP

    Research output: Contribution to journalArticlepeer-review

  5. Unique hole-accepting carbon-dots promoting selective carbon dioxide reduction nearly 100% to methanol by pure water

    Wang, Y., Liu, X., Han, X., Godin, R., Chen, J., Zhou, W., Jiang, C., Thompson, J., Bayazit, M., Shevlin, S., Durrant, J., Guo, Z. & Tang, J., 21 May 2020, In: Nature Communications. 11, 9 p., 2531.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Ligand electronic fine-tuning and its repercussion on the photocatalytic activity and mechanistic pathways of the copper-photocatalysed aza-Henry Reaction

    Li, C., Dickson, R., Rockstroh, N., Rabeah, J., Cordes, D. B., Slawin, A. M. Z., Hünemörder, P., Spannenberg, A., Buehl, M., Mejía, E., Zysman-Colman, E. & Kamer, P. C. J., 18 Sep 2020, In: Catalysis Science & Technology. Advance Article, 12 p.

    Research output: Contribution to journalArticlepeer-review

  2. Photoredox catalysts based on Earth-abundant metal complexes

    Hockin, B., Li, C., Robertson, N. & Zysman-Colman, E., 21 Feb 2019, In: Catalysis Science & Technology. 9, 4, p. 889-915

    Research output: Contribution to journalArticlepeer-review

  3. Towards practical earth abundant reduction catalysis: design of improved catalysts for manganese catalysed hydrogenation

    Widegren, M. B. & Clarke, M. L., 7 Nov 2019, In: Catalysis Science & Technology. 9, 21, p. 6047-6058

    Research output: Contribution to journalArticlepeer-review

  4. Less hindered ligands give improved catalysts for the nickel catalysed Grignard cross-coupling of aromatic ethers

    Harkness, G. J. & Clarke, M. L., 7 Jan 2018, In: Catalysis Science & Technology. 8, 1, p. 328-334

    Research output: Contribution to journalArticlepeer-review

ID: 263998625

Top