Skip to content

Research at St Andrews

Electrical conductivity and redox stability of La2Mo2-xWxO9 materials

Research output: Contribution to journalArticle


D Marrero-Lopez, J Canales-Vazquez, J C Ruiz-Morales, J T S Irvine, R Nunez

School/Research organisations


A series of compounds La2MO2-xWxO9 (x = 0-2) were synthesized using a freeze-dried precursor method at relatively low temperatures (673-823 K). These materials were characterised by thermogravimetric and differential thermal analysis (TG/DTA), differential scanning calorimetric (DSC), X-ray diffraction (XRD), and transmission electron microscopy (TEM) and dilatometric measurements. Oxygen stoichiometry was evaluated by coulometric titration and thermogravimetric analysis at 873-1273 K. The ionic and electronic conductivities of these materials were analysed by impedance spectroscopy and a Hebb-Wagner ion-blocking method under moderately reducing conditions. The presence of w(6+) leads to an increase of the stability range (about 10(-16) Pa for La2Mo0.5W1.5O9 at 1073 K) and prevents oxygen loss and arnorphisation. Within the stability range, the electronic conductivity increases gradually as the temperature increases and as the oxygen partial pressure reduces. This indicates that the electronic transport is mainly n-type as a result of the oxygen-content decreasing in the molybdate lattice. Further reduction of the oxygen partial pressure gave rise to the decomposition of La2Mo2-xWxO9, leading to the formation of new phases with molybdenum in lower oxidation states, which further enhances the electronic conductivity. The results of the coulometric titration and the thermogravimetric studies under a dry 5% H-2/Ar flow suggest that tungsten doped lanthanum molybdate materials can be used as electrolyte only at low temperature and under moderate reducing conditions. (c) 2005 Elsevier Ltd. All rights reserved.



Original languageEnglish
Pages (from-to)4385-4395
Number of pages11
JournalElectrochimica Acta
Publication statusPublished - 10 Aug 2005

    Research areas

  • La2Mo2O9, freeze-dried precursor method, oxygen ionic conductivity, coulometric titration, n-type conductivity, OXIDE-ION CONDUCTORS, ELECTRONIC CONDUCTIVITY, TRANSPORT-PROPERTIES, POWDER DIFFRACTION, LAMOX FAMILY, LA2MO2O9, DIFFUSION, GD, ELECTROLYTES, RELAXATION

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Lattice strain-enhanced exsolution of nanoparticles in thin films

    Han, H., Park, J., Nam, S. Y., Choi, G. M., Parkin, S. S. P., Jang, H. M. & Irvine, J. T. S., 1 Apr 2019, In : Nature Communications. 10, 8 p., 1471.

    Research output: Contribution to journalArticle

  2. Oxygen storage capacity and thermal stability of brownmillerite-type Ca2(Al1-xGax)MnO5+δ oxides

    Huang, X., Ni, C. & Irvine, J. T. S., 14 Aug 2019, In : Journal of Alloys and Compounds. 810, 151865.

    Research output: Contribution to journalArticle

  3. Enhanced cycling performance of magnesium doped lithium cobalt phosphate

    Kim, E. J., Miller, D., Irvine, J. T. S. & Armstrong, A. R., 26 Sep 2019, In : ChemElectroChem. 6, 18

    Research output: Contribution to journalArticle

  4. Insight into graphite oxidation in a NiO-based hybrid direct carbon fuel cell

    Jiang, C., Cui, C., Ma, J. & Irvine, J. T. S., 23 Sep 2019, In : International Journal of Hydrogen Energy. In press

    Research output: Contribution to journalArticle

  5. Synthesis and electrochemical characterization of La0.75Sr0.25Mn0.5Cr0.5‐xAlxO3, for IT- and HT- SOFCs

    Abdalla, A. M., Kamel, M., Hossain, S., Irvine, J. T. S. & Azad, A. K., 12 Sep 2019, In : International Journal of Applied Ceramic Technology. Early View

    Research output: Contribution to journalArticle

Related by journal

  1. Electrical reduction of perovskite electrodes for accelerating exsolution of nanoparticles

    Chanthanumataporn, M., Hui, J., Yue, X., Kakinuma, K., Irvine, J. T. S. & Hanamura, K., 20 May 2019, In : Electrochimica Acta. 306, p. 159-166 8 p.

    Research output: Contribution to journalArticle

  2. Numerical modeling of nickel-infiltrated gadolinium-doped ceria electrodes reconstructed with focused ion beam tomography

    Kishimoto, M., Lomberg, M., Ruiz-Trejo, E. & Brandon, N. P., 1 Feb 2016, In : Electrochimica Acta. 190, p. 178-185 8 p.

    Research output: Contribution to journalArticle

  3. Improvement of the electrochemical properties of novel solid oxide fuel cell anodes, La0.75Sr0.25Cr0.5Mn0.5O3−δ and La4Sr8Ti11Mn0.5Ga0.5O37.5−δ, using Cu–YSZ-based cermets

    Núñez, P., Ruiz-Morales, JC., Canales-Vázquez, J., Marrero-López, D. & Irvine, J. T. S., Sep 2007, In : Electrochimica Acta. 52, p. 7217-7225 9 p.

    Research output: Contribution to journalArticle

  4. Characterization of solid polymer electrolytes based on poly (trimethylenecarbonate) and lithium tetrafluoroborate

    Silva, M. M., Barros, S. C., Smith, M. J. & MacCallum, J. R., 15 May 2004, In : Electrochimica Acta. 49, p. 1887-1891 5 p.

    Research output: Contribution to journalArticle

ID: 698037