Skip to content

Research at St Andrews

Electrical properties in La2Sr4Ti6O19-δ: a potential anode for high temperature fuel cells

Research output: Contribution to journalArticle

Author(s)

J Canales-Vazquez, Shanwen Tao, John Thomas Sirr Irvine

School/Research organisations

Abstract

La2Sr4Ti6O19-δhas been investigated as a potential anode for fuel cells due to the high total conductivity found under reducing conditions. This mixed oxide is the n = 6 member of the excess oxygen perovskite-related family La2Srn-2TinO3n+1. The structure of this family of compounds can be described as perovskite slabs joined by crystallographic shears where the characteristic excess oxygen of these mixed oxides is accommodated. Phases such as La2Sr4Ti6O19-delta could be considered as a potential oxygen ion or proton conductor due to the significant amount of interstitial oxygen found in both reduced and oxidised forms. Partial removal of the excess oxygen by reduction of Ti4+ might lead to an enhancement of the ionic conductivity together with electronic conductivity due to the presence of Ti3+. The electrical properties of this material have been studied in a range of oxygen and water partial pressure revealing the important role played by delta, i.e. the amount of Ti3+, on these phases. Under the most reducing conditions, metallic conductivity, e.g. 60 S cm(-1), is observed and under slightly higher P(O-2), e.g. wet hydrogen, a metal to insulator transition is observed. In addition, initial fuel cell tests were carried out to check the performance of La2Sr4Ti6O19-delta as an anode for fuel cells. Using La2Sr4Ti6O19-delta as an anode, the polarisation resistance (R-p) varies from 2.97 Omega cm(2) at 900 degreesC in wet H-2 to 8.93 Omega cm(2) at 900 degreesC operating in wet CH4. A current value of 119 mA cm(-2) at 600 mV was found, whereas the maximum power density was 76 mW cm(-2) both measured in wet H-2 at 900 degreesC. (C) 2003 Elsevier Science B.V. All rights reserved.

Close

Details

Original languageEnglish
Pages (from-to)159-165
Number of pages7
JournalSolid State Ionics
Volume159
Issue number1-2
DOIs
Publication statusPublished - Mar 2003

    Research areas

  • La2Sr4Ti6O19-delta, temperature, anode, DOPED STRONTIUM-TITANATE, PROTONIC CONDUCTION, LANTHANUM, MICROSCOPY, LA2TI2O7

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. An FeNbO4-based oxide anode for a solid oxide fuel cell (SOFC)

    Liu, X., Xie, D., Irvine, J. T. S., Ni, J. & Ni, C., 11 Jan 2020, In : Electrochimica Acta. In press, 135692.

    Research output: Contribution to journalArticle

  2. A B-site doped perovskite ferrate for efficient anode of a solid oxide fuel cell with in situ metal exsolution

    Ni, C., Zeng, Q., He, D., Peng, L., Xie, D., Irvine, J. T. S., Duan, S. & Ni, J., 21 Dec 2019, In : Journal of Materials Chemistry A. 7, 47, p. 26944-26953 10 p.

    Research output: Contribution to journalArticle

  3. Lattice strain-enhanced exsolution of nanoparticles in thin films

    Han, H., Park, J., Nam, S. Y., Choi, G. M., Parkin, S. S. P., Jang, H. M. & Irvine, J. T. S., 1 Dec 2019, In : Nature Communications. 10, 8 p., 1471.

    Research output: Contribution to journalArticle

  4. Hexagonal perovskite related oxide ion conductor Ba3NbMoO8.5: phase transition, temperature evolution of the local structure and properties

    Chambers, M. S., McCombie, K. S., Auckett, J. E., McLaughlin, A. C., Irvine, J. T. S., Chater, P. A., Evans, J. S. O. & Evans, I. R., 28 Nov 2019, In : Journal of Materials Chemistry. 7, 44, p. 25503-25510 8 p.

    Research output: Contribution to journalArticle

  5. Oxygen storage capacity and thermal stability of brownmillerite-type Ca2(Al1-xGax)MnO5+δ oxides

    Huang, X., Ni, C. & Irvine, J. T. S., 25 Nov 2019, In : Journal of Alloys and Compounds. 810, 151865.

    Research output: Contribution to journalArticle

Related by journal

  1. Interface formation and Mn segregation of directly assembled La0.8Sr0.2MnO3 cathode on Y2O3-ZrO2 and Gd2O3-CeO2 electrolytes of solid oxide fuel cells

    He, S., Chen, K., Saunders, M., Quadir, Z., Tao, S., Irvine, J. T. S., Cui, C. Q. & Jiang, S. P., 1 Nov 2018, In : Solid State Ionics. 325, p. 176-188 13 p.

    Research output: Contribution to journalArticle

  2. Ionic conductivity in multiply substituted ceria-based electrolytes

    Coles-Aldridge, A. V. & Baker, R. T., Mar 2018, In : Solid State Ionics. 316, p. 9-19 11 p.

    Research output: Contribution to journalArticle

  3. Metal-oxide interactions for infiltrated Ni nanoparticles on A-site deficient LaxSr1 − 3x/2TiO3

    Hui, J., Neagu, D., Miller, D. N., Yue, X., Ni, C. & Irvine, J. T. S., Feb 2018, In : Solid State Ionics. 315, p. 126-130 5 p.

    Research output: Contribution to journalArticle

  4. Wet chemical synthesis and characterisation of Ba0.5Sr0.5Ce0.6Zr0.2Gd0.1Y0.1O3 − δ proton conductor

    Naeem Khan, M., Savaniu, C. D., Azad, A. K., Hing, P. & Irvine, J. T. S., May 2017, In : Solid State Ionics. 303, p. 52-57 6 p.

    Research output: Contribution to journalArticle

  5. Flux investigations on composite (La0.8Sr0.2)0.95Cr0.5Fe0.5O3 − δ–Sc0.198Ce0.012Zr0.789O1.90 oxygen transport membranes

    Dehaney-Steven, Z. A., Papargyriou, D. & Irvine, J. T. S., May 2016, In : Solid State Ionics. 288, p. 338-341 4 p.

    Research output: Contribution to journalArticle

ID: 760207

Top