Skip to content

Research at St Andrews

Electrical properties of bulk and grain boundaries of scandia-stabilized zirconia co-doped with yttria and ceria

Research output: Contribution to journalArticle

Author(s)

W Preis, J Waldhäusl, A Egger, W Sitte, Eduarda Maria Soares De Carvalho Tomás, John Thomas Sirr Irvine

School/Research organisations

Abstract

The electrical properties of bulk and grain boundaries of scandia-stabilized zirconia co-doped with yttria and ceria have been determined as a function of temperature (300 < T/°C < 700) and oxygen partial pressure [10− 24 ≤ p(O2)/bar ≤ 1, T = 700 °C] by application of impedance spectroscopy. The yttria and ceria contents of CexY0.2 − xSc0.6Zr3.2O8 − δ (0 ≤ x ≤ 0.2) have been varied systematically. Homogeneous samples have been prepared by means of a sol–gel (glycine-nitrate) combustion process. The ionic conductivity in air is almost independent of composition with typical values around 0.03–0.04 S cm− 1 for the bulk at 700 °C. A significant decrease of the ionic conductivities of bulk and grain boundaries is found for samples co-doped with ceria at low oxygen partial pressures [p(O2) < 10− 15 bar, T = 700 °C]. Activation energies for the ionic transport in oxidizing (air) and reducing (1%-H2/Ar) atmospheres have been extracted from Arrhenius-plots. The oxygen nonstoichiometry in 1%-H2/Ar has been investigated by employing thermogravimetry. The decrease of the ionic conductivity under reducing conditions is accompanied by an increase of the corresponding high temperature activation energy of the bulk, which is interpreted in terms of defect association or clustering
Close

Details

Original languageEnglish
Pages (from-to)148-152
JournalSolid State Ionics
Volume192
Issue number1
DOIs
Publication statusPublished - 2011

    Research areas

  • Solid electrolyte, Oxide ion conductor, Impedance spectroscopy, Scandia-stabilized zirconia, IT-SOFC

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. An FeNbO4-based oxide anode for a solid oxide fuel cell (SOFC)

    Liu, X., Xie, D., Irvine, J. T. S., Ni, J. & Ni, C., 11 Jan 2020, In : Electrochimica Acta. In press, 135692.

    Research output: Contribution to journalArticle

  2. Oxygen redox activity through a reductive coupling mechanism in the P3-type nickel-doped sodium manganese oxide

    Kim, E. J., Ma, L. A., Duda, L. C., Pickup, D. M., Chadwick, A. V., Younesi, R., Irvine, J. T. S. & Armstrong, R., 6 Jan 2020, In : ACS Applied Energy Materials. Early View

    Research output: Contribution to journalArticle

  3. A B-site doped perovskite ferrate for efficient anode of a solid oxide fuel cell with in situ metal exsolution

    Ni, C., Zeng, Q., He, D., Peng, L., Xie, D., Irvine, J. T. S., Duan, S. & Ni, J., 21 Dec 2019, In : Journal of Materials Chemistry A. 7, 47, p. 26944-26953 10 p.

    Research output: Contribution to journalArticle

  4. Lattice strain-enhanced exsolution of nanoparticles in thin films

    Han, H., Park, J., Nam, S. Y., Choi, G. M., Parkin, S. S. P., Jang, H. M. & Irvine, J. T. S., 1 Dec 2019, In : Nature Communications. 10, 8 p., 1471.

    Research output: Contribution to journalArticle

  5. Hexagonal perovskite related oxide ion conductor Ba3NbMoO8.5: phase transition, temperature evolution of the local structure and properties

    Chambers, M. S., McCombie, K. S., Auckett, J. E., McLaughlin, A. C., Irvine, J. T. S., Chater, P. A., Evans, J. S. O. & Evans, I. R., 28 Nov 2019, In : Journal of Materials Chemistry. 7, 44, p. 25503-25510 8 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Interface formation and Mn segregation of directly assembled La0.8Sr0.2MnO3 cathode on Y2O3-ZrO2 and Gd2O3-CeO2 electrolytes of solid oxide fuel cells

    He, S., Chen, K., Saunders, M., Quadir, Z., Tao, S., Irvine, J. T. S., Cui, C. Q. & Jiang, S. P., 1 Nov 2018, In : Solid State Ionics. 325, p. 176-188 13 p.

    Research output: Contribution to journalArticle

  2. Ionic conductivity in multiply substituted ceria-based electrolytes

    Coles-Aldridge, A. V. & Baker, R. T., Mar 2018, In : Solid State Ionics. 316, p. 9-19 11 p.

    Research output: Contribution to journalArticle

  3. Metal-oxide interactions for infiltrated Ni nanoparticles on A-site deficient LaxSr1 − 3x/2TiO3

    Hui, J., Neagu, D., Miller, D. N., Yue, X., Ni, C. & Irvine, J. T. S., Feb 2018, In : Solid State Ionics. 315, p. 126-130 5 p.

    Research output: Contribution to journalArticle

  4. Wet chemical synthesis and characterisation of Ba0.5Sr0.5Ce0.6Zr0.2Gd0.1Y0.1O3 − δ proton conductor

    Naeem Khan, M., Savaniu, C. D., Azad, A. K., Hing, P. & Irvine, J. T. S., May 2017, In : Solid State Ionics. 303, p. 52-57 6 p.

    Research output: Contribution to journalArticle

  5. Flux investigations on composite (La0.8Sr0.2)0.95Cr0.5Fe0.5O3 − δ–Sc0.198Ce0.012Zr0.789O1.90 oxygen transport membranes

    Dehaney-Steven, Z. A., Papargyriou, D. & Irvine, J. T. S., May 2016, In : Solid State Ionics. 288, p. 338-341 4 p.

    Research output: Contribution to journalArticle

ID: 15507609

Top