Skip to content

Research at St Andrews

Electrocatalytic ammonia synthesis via a proton conducting oxide cell with BaCe0.5Zr0.3Y0.16Zn0.04O3-δ electrolyte membrane

Research output: Contribution to journalArticle

DOI

Author(s)

S. Klinsrisuk, John T. S. Irvine

School/Research organisations

Abstract

Ceramic membrane cells of BaCe0.5Zr0.3Y0.16Zn0.04O3-δ (BCZYZ) have been developed for electrocatalytic ammonia syn-thesis. Unlike the high-pressure Haber-Bosch process, an atmospheric synthesis of ammonia was attempted in this work. The membrane cells were fabricated by tape casting and the electrode materials were applied by ion impregnation. The impregnated electrodes comprised NiO/CeO2 composite anode and iron oxide cathode. The formation of ammonia was studied in the range of 400–500 °C. The addition of Pd catalyst into the iron oxide cathode enhanced the ammonia forma-tion rate while the addition of Ru improved only the electrochemical performance. The highest ammonia formation rate of 4 × 10−9 mol s−1 cm−2 was obtained from Pd-modified cell at 450 °C. The current efficiency of ammonia formation was in the range of 1–2.5% while that of H2 evolution varied from 0 to 60% depending on applied potentials. The total current efficiency close to 100% was obtained from Pd-modified cell.
Close

Details

Original languageEnglish
Pages (from-to)41-50
Number of pages10
JournalCatalysis Today
Volume286
Early online date2 Jul 2016
DOIs
StatePublished - 15 May 2017

    Research areas

  • Ammonia production, Solid oxide membrane, Iron oxide catalyst, Pd catalyst, Ion impregnation

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Infiltrated La0.4Sr0.4Fe0.03Ni0.03Ti0.94O3 based anodes for all ceramic and metal supported solid oxide fuel cells

    Nielsen, J., Persson, Å. H., Sudireddy, B. R., Irvine, J. T. S. & Thydén, K. 5 Nov 2017 In : Journal of Power Sources. 372, p. 99-106 8 p.

    Research output: Contribution to journalArticle

  2. NdBaMn2O5+δ layered perovskite as an active cathode material for solid oxide fuel cells

    Abdalla, A. M., Hossain, S., Zhou, J., Petra, P. M. I., Erikson, S., Savaniu, C. D., Irvine, J. T. S. & Azad, A. K. 30 Aug 2017 In : Ceramics International. 43, 17, p. 15932-15938

    Research output: Contribution to journalArticle

  3. Highly dense and novel proton conducting materials for SOFC electrolyte

    Hossain, S., Abdalla, A. M., Zaini, J. H., Savaniu, C. D., Irvine, J. T. S. & Azad, A. K. 2 Nov 2017 In : International Journal of Hydrogen Energy. 42, 44, p. 27308-27322

    Research output: Contribution to journalArticle

  4. Novel layered perovskite SmBaMn2O5+δ for SOFCs anode material

    Abdalla, A. M., Hossain, S., Petra, P. M. I., Savaniu, C. D., Irvine, J. T. S. & Azad, A. K. 1 Oct 2017 In : Materials Letters. 204, p. 129-132 4 p.

    Research output: Contribution to journalArticle

  5. Promoting photocatalytic H2 evolution by tuning cation deficiency in la and Cr co-doped SrTiO3

    Hui, J., Zhang, G., Ni, C. & Irvine, J. T. S. 16 Sep 2017 In : Chemical Communications. 53, 72, p. 10038-10041 4 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Impact of the annealing temperature on Pt/g-C3N4 structure, activity and selectivity between photodegradation and water splitting

    Caux, M., Fina, F., Irvine, J. T. S., Idriss, H. & Howe, R. 1 Jun 2017 In : Catalysis Today. 287, p. 182-188 7 p.

    Research output: Contribution to journalArticle

  2. The effect of UTL layer connectivity in isoreticular zeolites on the catalytic performance in toluene alkylation

    Žilková, N., Eliášová, P., Al-Khattaf, S., Morris, R. E., Mazur, M. & Čejka, J. 15 Nov 2016 In : Catalysis Today. 277, Part 1, p. 55-60 6 p.

    Research output: Contribution to journalArticle

  3. Germanosilicate UTL and its rich chemistry of solid-state transformations towards IPC-2 (OKO) zeolite

    Mazur, M., Kubů, . M., Wheatley, P. S. & Eliášová, P. 1 Apr 2015 In : Catalysis Today. 243, p. 23–31 9 p.

    Research output: Contribution to journalArticle

  4. Photocatalytic H2 generation from spinels ZnFe2O4, ZnFeGaO4 and ZnGa2O4

    Xu, X., Azad, A. K. & Irvine, J. T. S. 1 Jan 2013 In : Catalysis Today. 199, p. 22-26 5 p.

    Research output: Contribution to journalArticle

ID: 243685610