Skip to content

Research at St Andrews

Electrochemical oxidation of solid carbon in hybrid DCFC with solid oxide and molten carbonate binary electrolyte

Research output: Contribution to journalArticle

DOI

Author(s)

Yuta Nabae, Kevin D. Pointon, John Thomas Sirr Irvine

School/Research organisations

Abstract

The hybrid direct carbon fuel cell (HDCFC) with solid oxide and molten carbonate binary electrolyte merges solid oxide fuel cell (SOFC) and molten carbonate fuel cell technologies to achieve direct conversion of solid carbon to electric power. The purpose of this study is to investigate in detail the electrochemistry of the oxidation of solid carbon in the carbon/carbonate slurry in the HDCFC. A planar test cell has been fabricated employing conventional SOFC materials and a eutectic carbonate mixture of lithium carbonate and potassium carbonate. The HDCFC with a model fuel, carbon black XC-72R, shows very high open circuit voltages (OCVs), approximately 1.5 V at 550-700 degrees C, especially after a high temperature operation at 900 degrees C, where carbonate decomposes to O2- and CO2. The carbon/carbonate slurry increases the active reaction zone from a two-dimensional Ni/YSZ anode to a three-dimensional slurry and significantly enhances the carbon oxidation. The high OCV is probably due to the low activity of CO2 in the slurry, which results from the recombination of CO2 and O2-. Gaseous products were analysed using an online gas chromatograph, and CO2 and CO were detected, with their selectivity found to be dependent on temperature. Solid carbon is electrochemically oxidised to CO2 and the final distribution of the products is dominated by the equilibrium of the Boudouard reaction (C + CO2 reversible arrow 2CO).

Close

Details

Original languageEnglish
Pages (from-to)148-155
Number of pages8
JournalEnergy & Environmental Science
Volume1
Issue number1
DOIs
Publication statusPublished - 2008

    Research areas

  • FUEL-CELL, EUTECTIC MIXTURE, SOLUBILITY, CONVERSION

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. An FeNbO4-based oxide anode for a solid oxide fuel cell (SOFC)

    Liu, X., Xie, D., Irvine, J. T. S., Ni, J. & Ni, C., 11 Jan 2020, In : Electrochimica Acta. In press, 135692.

    Research output: Contribution to journalArticle

  2. A B-site doped perovskite ferrate for efficient anode of a solid oxide fuel cell with in situ metal exsolution

    Ni, C., Zeng, Q., He, D., Peng, L., Xie, D., Irvine, J. T. S., Duan, S. & Ni, J., 21 Dec 2019, In : Journal of Materials Chemistry A. 7, 47, p. 26944-26953 10 p.

    Research output: Contribution to journalArticle

  3. Lattice strain-enhanced exsolution of nanoparticles in thin films

    Han, H., Park, J., Nam, S. Y., Choi, G. M., Parkin, S. S. P., Jang, H. M. & Irvine, J. T. S., 1 Dec 2019, In : Nature Communications. 10, 8 p., 1471.

    Research output: Contribution to journalArticle

  4. Hexagonal perovskite related oxide ion conductor Ba3NbMoO8.5: phase transition, temperature evolution of the local structure and properties

    Chambers, M. S., McCombie, K. S., Auckett, J. E., McLaughlin, A. C., Irvine, J. T. S., Chater, P. A., Evans, J. S. O. & Evans, I. R., 28 Nov 2019, In : Journal of Materials Chemistry. 7, 44, p. 25503-25510 8 p.

    Research output: Contribution to journalArticle

  5. Oxygen storage capacity and thermal stability of brownmillerite-type Ca2(Al1-xGax)MnO5+δ oxides

    Huang, X., Ni, C. & Irvine, J. T. S., 25 Nov 2019, In : Journal of Alloys and Compounds. 810, 151865.

    Research output: Contribution to journalArticle

Related by journal

  1. Role of coal characteristics in the electrochemical behaviour of hybrid direct carbon fuel cells

    Fuente Cuesta, A., Jiang, C., Arenillas, A. & Irvine, J. T. S., 1 Sep 2016, In : Energy & Environmental Science. 9, 9, p. 2868-2880 13 p.

    Research output: Contribution to journalArticle

  2. Structurally stable Mg-doped P2-Na2/3Mn1-yMgyO2 sodium-ion battery cathodes with high rate performance: insights from electrochemical, NMR and diffraction studies

    Clément, R., Billaud, J., Armstrong, R., Singh, G., Rojo, T., Bruce, P. G. & Grey, C. P., 1 Oct 2016, In : Energy & Environmental Science. 9, 10, p. 3240-3251 12 p.

    Research output: Contribution to journalArticle

  3. Na0.67Mn1-xMgxO2 (0 <= x <= 0.2): a high capacity cathode for sodium-ion batteries

    Billaud, J., Singh, G., Armstrong, A. R., Gonzalo, E., Roddatis, V., Armand, M., Rojob, T. & Bruce, P. G., Apr 2014, In : Energy & Environmental Science. 7, 4, p. 1387-1391 5 p.

    Research output: Contribution to journalArticle

  4. Step-change in high temperature steam electrolysis performance of perovskite oxide cathodes with exsolution of B-site dopants

    Tsekouras, G., Neagu, D. & Irvine, J. T. S., Jan 2013, In : Energy & Environmental Science. 6, 1, p. 256-266 11 p.

    Research output: Contribution to journalArticle

  5. Demonstration of high power, direct conversion of waste-derived carbon in a hybrid direct carbon fuel cell

    Jiang, C., Ma, J., Bonaccorso, A. D. & Irvine, J. T. S., May 2012, In : Energy & Environmental Science. 5, 5, p. 6973-6980 8 p.

    Research output: Contribution to journalArticle

ID: 421128

Top