Skip to content

Research at St Andrews

Electrochemical performance of a hybrid direct carbon fuel cell powered by pyrolysed MDF

Research output: Contribution to journalArticlepeer-review

DOI

Author(s)

Sneh Lata Jain, JB Lakeman, KD Pointon, R Marshall, John Thomas Sirr Irvine

School/Research organisations

Abstract

Medium density fibreboard is a ubiquitous element in modern furniture, here we consider utilising waste MDF as a future energy source. In particular, we focus upon the hybrid direct carbon fuel cell (HDCFC), which involves a combined molten carbonate/solid oxide fuel cell anode/electrolyte interface and can be fuelled by a wide range of carbon forms. Current-voltage measurements and a. c. impedance at temperatures in the range of 525-800 degrees C have been made on cells powered by pyrolysed medium density fibreboard (pMDF) samples which had undergone three different preparatory treatments (immersion of strips in molten eutectic carbonate mixture; deep soaking of strips in aqueous carbonate mixture corresponding to the eutectic composition and fine powdering). Below 700 degrees C the three pMDF samples show quite different electrochemical performance in the HDCFC, but above 700 degrees C their behaviour becomes similar. Powdered pMDF gives the best OCV (0.89 V) and lowest resistance (2.36 Omega) values below 700 degrees C, although the electrochemical performance is dominated by diffusion limitations and the performance degrades at higher temperatures. The immersed strip behaves quite differently with limited performance below 750 degrees C but it shows both good OCV, 1 V, and low resistance, <4 Omega, at higher temperatures. Three components are discernable, an ohmic contribution probably due to both ionic resistance of zirconia electrolyte and electronic resistance of current collection and two electrode processes thought to be associated with the transfer of oxygen ions at the electrode : electrolyte interface and diffusion of reactant species through the electrode. The activation energies calculated from the ohmic resistances for the three samples (-0.79 - -1.00 eV) are of similar order to that expected for the yttria zirconia electrolyte.

Close

Details

Original languageEnglish
Pages (from-to)687-693
Number of pages7
JournalEnergy & Environmental Science
Volume2
Issue number6
DOIs
Publication statusPublished - 2009

    Research areas

  • MEDIUM-DENSITY FIBERBOARD, SOLID OXIDE, BINARY

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Comparison of UV-A photolytic and UV/TiO2 photocatalytic effects on Microcystis aeruginosa PCC7813 and four microcystin analogues: a pilot scale study

    Menezes, I., Capelo-Neto, J., Pestana, C. J., Clemente, A., Hui, J., Irvine, J. T. S., Nimal Gunaratne, H. Q., Robertson, P. K. J., Edwards, C., Gillanders, R. N., Turnbull, G. A. & Lawton, L. A., 15 Nov 2021, In: Journal of Environmental Management. 298, 113519.

    Research output: Contribution to journalArticlepeer-review

  2. Fabrication and characterization of a tubular solid oxide fuel cell with impregnated perovskite electrodes

    Nowicki, K. M., Wang, M. & Irvine, J. T. S., 1 Nov 2021, In: ECS Transactions. 103, 1, p. 93-103 11 p.

    Research output: Contribution to journalArticlepeer-review

  3. Aqueous thick-film ceramic processing of planar solid oxide fuel cells using La0.20Sr0.25Ca0.45TiO3 anode supports

    Price, R., Savaniu, C. D., Cassidy, M. & Irvine, J. T. S., 1 Nov 2021, In: ECS Transactions. 103, 1, p. 1625-1639 15 p.

    Research output: Contribution to journalArticlepeer-review

  4. Development of the Ca/FeS2 chemistry for thermal batteries

    Dickson, S. A. M., Gover, R. K. B. & Irvine, J. T. S., 9 Sep 2021, (E-pub ahead of print) In: Chemistry of Materials. 12 p.

    Research output: Contribution to journalArticlepeer-review

  5. Use of interplay between A-site non-stoichiometry and hydroxide doping to deliver novel proton-conducting perovskite oxides

    Lee, J., Naden, A. B., Savaniu, C. D., Connor, P. A., Payne, J. L., Skelton, J., Gibbs, A., Hui, J., Parker, S. & Irvine, J. T. S., 26 Aug 2021, (E-pub ahead of print) In: Advanced Energy Materials. Early View, 7 p., 2101337.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Structurally stable Mg-doped P2-Na2/3Mn1-yMgyO2 sodium-ion battery cathodes with high rate performance: insights from electrochemical, NMR and diffraction studies

    Clément, R., Billaud, J., Armstrong, R., Singh, G., Rojo, T., Bruce, P. G. & Grey, C. P., 1 Oct 2016, In: Energy & Environmental Science. 9, 10, p. 3240-3251 12 p.

    Research output: Contribution to journalArticlepeer-review

  2. Morphology changes upon scaling a high-efficiency, solution-processed solar cell

    Ro, H. W., Downing, J. M., Engmann, S., Herzing, A. A., Delongchamp, D. M., Richter, L. J., Mukherjee, S., Ade, H., Abdelsamie, M., Jagadamma, L. K., Amassian, A., Liu, Y. & Yan, H., 1 Sep 2016, In: Energy and Environmental Science. 9, 9, p. 2835-2846 12 p.

    Research output: Contribution to journalArticlepeer-review

  3. Role of coal characteristics in the electrochemical behaviour of hybrid direct carbon fuel cells

    Fuente Cuesta, A., Jiang, C., Arenillas, A. & Irvine, J. T. S., 1 Sep 2016, In: Energy & Environmental Science. 9, 9, p. 2868-2880 13 p.

    Research output: Contribution to journalArticlepeer-review

  4. Na0.67Mn1-xMgxO2 (0 <= x <= 0.2): a high capacity cathode for sodium-ion batteries

    Billaud, J., Singh, G., Armstrong, A. R., Gonzalo, E., Roddatis, V., Armand, M., Rojob, T. & Bruce, P. G., Apr 2014, In: Energy & Environmental Science. 7, 4, p. 1387-1391 5 p.

    Research output: Contribution to journalArticlepeer-review

  5. Step-change in high temperature steam electrolysis performance of perovskite oxide cathodes with exsolution of B-site dopants

    Tsekouras, G., Neagu, D. & Irvine, J. T. S., Jan 2013, In: Energy & Environmental Science. 6, 1, p. 256-266 11 p.

    Research output: Contribution to journalArticlepeer-review

ID: 448325

Top