Skip to content

Research at St Andrews

Electrochemical performance of novel NGCO-LSCF composite cathode for intermediate temperature solid oxide fuel cells

Research output: Contribution to journalArticlepeer-review

Author(s)

Ayesha Samreen, Maria Galvez-Sanchez, Robert Steinberger-Wilckens, Nor Anisa Arifin, Saim Saher, Shahid Ali, Affaq Qamar

School/Research organisations

Abstract

In this study, a co-dopant CGO was synthesized to produce more efficient cathode materials for intermediate temperature solid oxide fuel cell (IT-SOFC) applications. Neodymium (Nd) was doped into CGO in four different weight ratios in the formula NdxGd0.15Ce0.85-xO2-δ (NGCO); the selected percentages for x were 1%, 3%, 5% and 7%. XRD patterns showed pure phase for all synthesized compositions and good compatibility at high temperature under static air with the most common ceramic cathode material in IT-SOFC (La0·60Sr0·40Co0·20Fe0·80O2-ä, LSCF). Impedance spectroscopic characterization of symmetrical cells of the composite NGCO-LSCF at different temperatures (650–800 °C in steps of 50 °C) and a frequency range of 0.1–1 MHz in synthetic air revealed interesting results. The lowest polarization resistance (Rp) was achieved for Nd0.05Gd0.15Ce0·80O2-δ (0.06 Ω cm2 at 800 °C, 0.17 Ω cm2 at 750 °C, 0.31 Ω cm2 at 700 °C, and 0.59 Ω cm2 at 650 °C). The expected decrease in Rp was not observed for the sample with higher Nd content (7% Nd). Thus, it can be said that there is a distinction between the compositions Nd0.05Gd0.15Ce0·80O2-δ and Nd0.07Gd0.15Ce0·78O2-δ; the co-doping of Nd in NGCO incremented the oxygen ion diffusion path, thereby optimization in the triple phase boundary (TPB) sites was obtained. Furthermore, SEM and TGA measurements were conducted to clarify the reasons of such improvements. This work showed that an NGCO-LSCF composite can be considered as a potential candidate for cathode material for future IT-SOFC applications.

Close

Details

Original languageEnglish
Pages (from-to)21714-21721
JournalInternational Journal of Hydrogen Energy
Volume45
Issue number41
Early online date22 Jul 2020
DOIs
Publication statusPublished - 21 Aug 2020

    Research areas

  • Cathode material, Co-doped ceria, Co-precipitation method, Impedance spectroscopy, IT- SOFC, Polarization resistance

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by journal

  1. Reversible, all-perovskite SOFCs based on La, Sr gallates

    Glisenti, A., Bedon, A., Carollo, G., Savaniu, C. & Irvine, J. T. S., 10 Aug 2020, In: International Journal of Hydrogen Energy. In press

    Research output: Contribution to journalArticlepeer-review

  2. Insight into graphite oxidation in a NiO-based hybrid direct carbon fuel cell

    Jiang, C., Cui, C., Ma, J. & Irvine, J. T. S., 23 Sep 2019, In: International Journal of Hydrogen Energy. In press

    Research output: Contribution to journalArticlepeer-review

  3. Highly dense and chemically stable proton conducting electrolyte sintered at 1200 °C

    Hossain, S., Abdalla, A. M., Radenahmad, N., Zakaria, A. K. M., Zaini, J. H., Rahman, S. M. H., Eriksson, S. G., Irvine, J. T. S. & Azad, A. K., 11 Jan 2018, In: International Journal of Hydrogen Energy. 43, 2, p. 894-907

    Research output: Contribution to journalArticlepeer-review

  4. Production and stability of low amount fraction of formaldehyde in hydrogen gas standards

    Bacquart, T., Perkins, M., Ferracci, V., Martin, N. A., Resner, K., Ward, M. K. M., Cassidy, N., Hook, J. B., Brewer, P. J., Irvine, J. T. S., Connor, P. A. & Murugan, A., 29 Mar 2018, In: International Journal of Hydrogen Energy. 43, 13, p. 6711-6722

    Research output: Contribution to journalArticlepeer-review

ID: 269364110

Top