Skip to content

Research at St Andrews

Ellipsoidal vortices in rotating stratified fluids: beyond the quasi-geostrophic approximation

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Abstract

We examine the basic properties and stability of isolated vortices having uniform potential vorticity (PV) in a non-hydrostatic rotating stratified fluid, under the Boussinesq approximation. For simplicity, we consider a uniform background rotation and a linear basic-state stratification for which both the Coriolis and buoyancy frequencies, f and N, are constant. Moreover, we take ƒ/N≪1,
as typically observed in the Earth’s atmosphere and oceans. In the small Rossby number ‘quasi-geostrophic’ (QG) limit, when the flow is weak compared to the background rotation, there exist exact solutions for steadily rotating ellipsoidal volumes of uniform PV in an unbounded flow (Zhmur & Shchepetkin, Izv. Akad. Nauk SSSR Atmos. Ocean. Phys., vol. 27, 1991, pp. 492–503; Meacham, Dyn. Atmos. Oceans, vol. 16, 1992, pp. 189–223). Furthermore, a wide range of these solutions are stable as long as the horizontal and vertical aspect ratios λ and μ do not depart greatly from unity (Dritschel et al.,J. Fluid Mech., vol. 536, 2005, pp. 401–421). In the present study, we examine the behaviour of ellipsoidal vortices at Rossby numbers up to near unity in magnitude. We find that there is a monotonic increase in stability as one varies the Rossby number from nearly −1 (anticyclone) to nearly +1 (cyclone). That is, QG vortices are more stable than anticyclones at finite negative Rossby number, and generally less stable than cyclones at finite positive Rossby number. Ageostrophic effects strengthen both the rotation and the stratification within a cyclone, enhancing its stability. The converse is true for an anticyclone. For all Rossby numbers, stability is reinforced by increasing λ towards unity or decreasing μ. An unstable vortex often restabilises by developing a near-circular cross-section, typically resulting in a roughly ellipsoidal vortex, but occasionally a binary system is formed. Throughout the nonlinear evolution of a vortex, the emission of inertia–gravity waves (IGWs) is negligible across the entire parameter space investigated. Thus, vortices at small to moderate Rossby numbers, and any associated instabilities, are (ageostrophically) balanced. A manifestation of this balance is that, at finite Rossby number, an anticyclone rotates faster than a cyclone.

Close

Details

Original languageEnglish
Pages (from-to)196-231
Number of pages36
JournalJournal of Fluid Mechanics
Volume762
Early online date2 Dec 2014
DOIs
Publication statusPublished - Jan 2015

    Research areas

  • Geophysical and geological flows, Rotating flows, Vortex dynamics, Warm-core rings, Geophysical flows, Shallow-water, Oceanic vortices, Shear-flow, Vortex, Balance, Stability, Evolution, Equilibria

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Comparison of the Moist Parcel-In-Cell (MPIC) model with large-eddy simulation for an idealized cloud

    Böing, S. J., Dritschel, D. G., Parker, D. J. & Blyth, A. M., 29 Apr 2019, In : Quarterly Journal of the Royal Meteorological Society. In press, 17 p.

    Research output: Contribution to journalArticle

  2. On the regularity of the Green-Naghdi equations for a rotating shallow fluid layer

    Dritschel, D. G. & Jalali, M. R., 25 Apr 2019, In : Journal of Fluid Mechanics. 865, p. 100-136

    Research output: Contribution to journalArticle

  3. Scale-invariant singularity of the surface quasigeostrophic patch

    Scott, R. K. & Dritschel, D. G., 25 Mar 2019, In : Journal of Fluid Mechanics. 863, 12 p., R2.

    Research output: Contribution to journalArticle

Related by journal

  1. Journal of Fluid Mechanics (Journal)

    David Gerard Dritschel (Editor)
    2005 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

Related by journal

  1. On the regularity of the Green-Naghdi equations for a rotating shallow fluid layer

    Dritschel, D. G. & Jalali, M. R., 25 Apr 2019, In : Journal of Fluid Mechanics. 865, p. 100-136

    Research output: Contribution to journalArticle

  2. Scale-invariant singularity of the surface quasigeostrophic patch

    Scott, R. K. & Dritschel, D. G., 25 Mar 2019, In : Journal of Fluid Mechanics. 863, 12 p., R2.

    Research output: Contribution to journalArticle

  3. The stability and nonlinear evolution of quasi-geostrophic toroidal vortices

    Reinaud, J. N. & Dritschel, D. G., 25 Mar 2019, In : Journal of Fluid Mechanics. 863, p. 60-78

    Research output: Contribution to journalArticle

  4. Three-dimensional quasi-geostrophic vortex equilibria with m−fold symmetry

    Reinaud, J. N., 25 Mar 2019, In : Journal of Fluid Mechanics. 863, p. 32-59

    Research output: Contribution to journalArticle

ID: 161187157

Top