Skip to content

Research at St Andrews

Enhancement of image quality and imaging depth with Airy light-sheet microscopy in cleared and non-cleared neural tissue

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Author(s)

Jonathan Nylk, Kaley Allyn McCluskey, Sanya Aggarwal, Javier Tello, Kishan Dholakia

School/Research organisations

Abstract

We have investigated the effect of Airy illumination on the image quality and depth penetration of digitally scanned light-sheet microscopy in turbid neural tissue. We used Fourier analysis of images acquired using Gaussian and Airy light-sheets to assess their respective image quality versus penetration into the tissue. We observed a three-fold average improvement in image quality at 50 μm depth with the Airy light-sheet. We also used optical clearing to tune the scattering properties of the tissue and found that the improvement when using an Airy light-sheet is greater in the presence of stronger sample-induced aberrations. Finally, we used homogeneous resolution probes in these tissues to quantify absolute depth penetration in cleared samples with each beam type. The Airy light-sheet method extended depth penetration by 30% compared to a Gaussian light-sheet.
Close

Details

Original languageEnglish
Pages (from-to)4021-4033
JournalBiomedical Optics Express
Volume7
Issue number10
Early online date14 Sep 2016
DOIs
Publication statusPublished - 1 Oct 2016

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Light-sheet microscopy with attenuation-compensated propagation-invariant beams

    Nylk, J., McCluskey, K. A., Preciado, M., Mazilu, M., Yang, Z., Gunn-Moore, F. J., Aggarwal, S., Tello, J. A., Ferrier, D. E. K. & Dholakia, K., 6 Apr 2018, In : Science Advances. 4, 4, 14 p., eaar4817.

    Research output: Contribution to journalArticle

  2. Multimode fibre based imaging for optically cleared samples

    Gusachenko, I., Nylk, J., Tello, J. A. & Dholakia, K., 1 Nov 2017, In : Biomedical Optics Express. 8, 11, p. 5179-5190

    Research output: Contribution to journalArticle

  3. Light sheet microscopy with acoustic sample confinement

    Yang, Z., Cole, K. L. H., Qiu, Y., Somorjai, I. M. L., Wijesinghe, P., Nylk, J., Cochran, S., Spalding, G. C., Lyons, D. A. & Dholakia, K., 8 Feb 2019, In : Nature Communications. 10, 8 p., 669.

    Research output: Contribution to journalArticle

  4. Three-photon light-sheet fluorescence microscopy

    Escobet Montalban, A., Gasparoli, F. M., Nylk, J., Liu, P., Yang, Z. & Dholakia, K., 1 Nov 2018, In : Optics Letters. 43, 21, p. 5484-5487 4 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Analysis of spatial resolution in phase-sensitive compression optical coherence elastography

    Hepburn, M. S., Wijesinghe, P., Chin, L. & Kennedy, B. F., 28 Feb 2019, In : Biomedical Optics Express. 10, 3, p. 1496-1513 18 p.

    Research output: Contribution to journalArticle

  2. Finger-mounted quantitative micro-elastography

    Sanderson, R. W., Curatolo, A., Wijesinghe, P., Chin, L. & Kennedy, B. F., 1 Apr 2019, In : Biomedical Optics Express. 10, 4, p. 1760-1773 14 p.

    Research output: Contribution to journalArticle

  3. Handheld probe for quantitative micro-elastography

    Fang, Q., Krajancich, B., Chin, L., Zilkens, R., Curatolo, A., Frewer, L., Anstie, J. D., Wijesinghe, P., Hall, C., Dessauvagie, B. F., Latham, B., Saunders, C. M. & Kennedy, B. F., 1 Aug 2019, In : Biomedical Optics Express. 10, 8, p. 4034-4049 16 p.

    Research output: Contribution to journalArticle

  4. Fast volume-scanning light sheet microscopy reveals transient neuronal events

    Haslehurst, P., Yang, Z., Dholakia, K. & Emptage, N., 1 May 2018, In : Biomedical Optics Express. 9, 5, p. 2154-2167

    Research output: Contribution to journalArticle

  5. Multimode fibre based imaging for optically cleared samples

    Gusachenko, I., Nylk, J., Tello, J. A. & Dholakia, K., 1 Nov 2017, In : Biomedical Optics Express. 8, 11, p. 5179-5190

    Research output: Contribution to journalArticle

ID: 245779217

Top