Skip to content

Research at St Andrews

Entrapping of a vortex pair interacting with a fixed point vortex revisited. II. Finite size vortices and the effect of deformation

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Author(s)

Jean N. Reinaud, Konstantin V. Koshel, Eugene A. Ryzhov

School/Research organisations

Abstract

We investigate the evolution of a pair of two-dimensional, opposite-signed, finite-size vortices interacting with a fixed point vortex. The present paper builds on the accompanying study by Koshel et al. [“Entrapping of a vortex pair interacting with a fixed point vortex revisited. I. Point vortices,” Phys. Fluids 30, 096603 (2018)] focusing on the motion of a pair of point vortices impinging on a fixed point vortex. Here, by contrast, the pair of opposite-signed finite-size vortices, or vortex dipole for simplicity, can deform. This deformation has an impact on the dynamics. We show that, as expected, finite size vortices behave like point vortices if they are distant enough from each other. This allows one to recover the rich and diverse set of possible trajectories for the dipole. This includes the regimes of intricate bounded motion when the finite-size vortices remain stable near the fixed vortex for a long time. On the other hand, we show that large finite-size vortices can deform significantly and deviate from the trajectories of equivalent point vortices. When the shear that the vortices induce on each other is large enough, the finite size vortices may break into smaller structures or may even be completely strained out.
Close

Details

Original languageEnglish
Article number096604
Number of pages10
JournalPhysics of Fluids
Volume30
Issue number9
Early online date28 Sep 2018
DOIs
StateE-pub ahead of print - 28 Sep 2018

    Research areas

  • Finite size vortex, Vortex interaction, Vortex-topography interaction

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Entrapping of a vortex pair interacting with a fixed point vortex revisited. I. Point vortices

    Koshel, K. V., Reinaud, J. N., Riccardi, G. & Ryzhov, E. A. 28 Sep 2018 In : Physics of Fluids. 30, 9, 096603

    Research output: Contribution to journalArticle

  2. The merger of geophysical vortices at finite Rossby and Froude number

    Reinaud, J. N. & Dritschel, D. G. 10 Aug 2018 In : Journal of Fluid Mechanics. 848, p. 388-410

    Research output: Contribution to journalArticle

  3. Hetonic quartets in a two-layer quasi-geostrophic flow: V-states and stability

    Reinaud, J. N., Sokolovskiy, M. & Carton, X. 11 May 2018 In : Physics of Fluids. 30, 21 p., 056602

    Research output: Contribution to journalArticle

  4. The interaction of two surface vortices near a topographic slope in a stratified ocean

    de Marez, C., Carton, X., Morvan, M. & Reinaud, J. N. Dec 2017 In : Fluids. 2, 4, 25 p., 57

    Research output: Contribution to journalArticle

Related by journal

  1. Entrapping of a vortex pair interacting with a fixed point vortex revisited. I. Point vortices

    Koshel, K. V., Reinaud, J. N., Riccardi, G. & Ryzhov, E. A. 28 Sep 2018 In : Physics of Fluids. 30, 9, 096603

    Research output: Contribution to journalArticle

  2. Hetonic quartets in a two-layer quasi-geostrophic flow: V-states and stability

    Reinaud, J. N., Sokolovskiy, M. & Carton, X. 11 May 2018 In : Physics of Fluids. 30, 21 p., 056602

    Research output: Contribution to journalArticle

  3. Geostrophic tripolar vortices in a two-layer fluid: linear stability and nonlinear evolution of equilibria

    Reinaud, J. N., Sokolovskiy, M. & Carton, X. Mar 2017 In : Physics of Fluids. 29, 3, 16 p., 036601

    Research output: Contribution to journalArticle

  4. Interaction between a surface quasi-geostrophic buoyancy anomaly jet and internal vortices

    Reinaud, J. N., Dritschel, D. G. & Carton, X. Aug 2017 In : Physics of Fluids. 29, 8, 16 p., 086603

    Research output: Contribution to journalArticle

Related by journal

  1. Physics of Fluids (Journal)

    Dritschel, D. G. (Editor)
    2005 → …

    Activity: Publication peer-review and editorial workEditor of research journal

ID: 255820348