Skip to content

Research at St Andrews

Enumeration of idempotents in diagram semigroups and algebras

Research output: Contribution to journalArticlepeer-review

Author(s)

I. Dolinka, J. East, A. Evangelou, D. FitzGerald, N. Ham, J. Hyde, N. Loughlin

School/Research organisations

Abstract

We give a characterisation of the idempotents of the partition monoid, and use this to enumerate the idempotents in the finite partition, Brauer and partial Brauer monoids, giving several formulae and recursions for the number of idempotents in each monoid as well as various R-, L- and D-classes. We also apply our results to determine the number of idempotent basis elements in the finite dimensional partition, Brauer and partial Brauer algebras.
Close

Details

Original languageEnglish
Pages (from-to)119-152
Number of pages34
JournalJournal of Combinatorial Theory, Series A
Volume131
Early online date9 Dec 2014
DOIs
Publication statusPublished - Apr 2015

    Research areas

  • Partition monoids, Partition algebras, Brauer monoids, Brauer algebras idempotents, Enumeration

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by journal

  1. Lifting tropical self intersections

    Len, Y. & Satriano, M., Feb 2020, In: Journal of Combinatorial Theory, Series A. 170, 21 p., 105138.

    Research output: Contribution to journalArticlepeer-review

  2. Bounds on the number of small Latin subsquares

    Browning, J., Cameron, P. J. & Wanless, I., May 2014, In: Journal of Combinatorial Theory, Series A. 124, p. 41-56

    Research output: Contribution to journalArticlepeer-review

  3. Combinatorial representations

    Cameron, P. J., Gadouleau, M. & Riis, S., 2013, In: Journal of Combinatorial Theory, Series A. 120, 3, p. 671-682

    Research output: Contribution to journalArticlepeer-review

  4. Substitution-closed pattern classes

    Atkinson, M. D., Ruskuc, N. & Smith, R., Feb 2011, In: Journal of Combinatorial Theory, Series A. 118, 2, p. 317-340

    Research output: Contribution to journalArticlepeer-review

ID: 161258103

Top