Skip to content

Research at St Andrews

Enumeration of idempotents in planar diagram monoids

Research output: Contribution to journalArticle

Open Access Status

  • Embargoed (until 26/11/19)

Author(s)

Igor Dolinka, James East, Athanasios Evangelou, Des FitzGerald, Nicholas Ham, James Hyde, Nicholas Loughlin, James D. Mitchell

School/Research organisations

Abstract

We classify and enumerate the idempotents in several planar diagram monoids: namely, the Motzkin, Jones (a.k.a. Temperley–Lieb) and Kauffman monoids. The classification is in terms of certain vertex- and edge-coloured graphs associated to Motzkin diagrams. The enumeration is necessarily algorithmic in nature, and is based on parameters associated to cycle components of these graphs. We compare our algorithms to existing algorithms for enumerating idempotents in arbitrary (regular ⁎-) semigroups, and give several tables of calculated values.

Close

Details

Original languageEnglish
Pages (from-to)351-385
Number of pages35
JournalJournal of Algebra
Volume522
Early online date26 Nov 2018
DOIs
Publication statusPublished - 15 Mar 2019

    Research areas

  • Diagram monoids, Partition monoids, Motzkin monoids, Jones monoids, Temperley–Lieb monoids, Kauffman monoids, Idempotents, Enumeration

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. GAP – Groups, Algorithms, and Programming, Version 4.10.2

    The GAP Group, Behrends, R., Breuer, T., Horn, M., Hulpke, A., Jefferson, C. A., Konovalov, A., Linton, S. A., Lübeck, F., Mitchell, J. D., Pfeiffer, M. J., Siccha, S. & Torpey, M. C., 19 Jun 2019

    Research output: Non-textual formSoftware

  2. GAP – Groups, Algorithms, and Programming, Version 4.10.1

    The GAP Group, Behrends, R., Breuer, T., Horn, M., Hulpke, A., Jefferson, C. A., Konovalov, A., Linton, S. A., Lübeck, F., Mitchell, J. D., Pfeiffer, M. J., Siccha, S. & Torpey, M. C., 23 Feb 2019

    Research output: Non-textual formSoftware

  3. GAP – Groups, Algorithms, and Programming, Version 4.10.0

    The GAP Group, Behrends, R., Breuer, T., Horn, M., Hulpke, A., Jefferson, C. A., Konovalov, A., Linton, S. A., Lübeck, F., Mitchell, J. D., Pfeiffer, M. J., Siccha, S. & Torpey, M. C., 1 Nov 2018

    Research output: Non-textual formSoftware

  4. GAP – Groups, Algorithms, and Programming, Version 4.9.3

    The GAP Group, Behrends, R., Breuer, T., Horn, M., Hulpke, A., Jefferson, C. A., Konovalov, A., Linton, S. A., Lübeck, F., Mitchell, J. D., Pfeiffer, M. J., Siccha, S. & Torpey, M. C., 5 Sep 2018

    Research output: Non-textual formSoftware

Related by journal

  1. Involution centralisers in finite unitary groups of odd characteristic

    Glasby, S., Praeger, C. & Roney-Dougal, C. M., 26 Sep 2019, In : Journal of Algebra. In press

    Research output: Contribution to journalArticle

  2. Minimal and canonical images

    Jefferson, C., Jonauskyte, E., Pfeiffer, M. & Waldecker, R., 1 Mar 2019, In : Journal of Algebra. 521, p. 481-506

    Research output: Contribution to journalArticle

  3. The Hall–Paige conjecture, and synchronization for affine and diagonal groups

    Bray, J., Cai, Q., Cameron, P. J., Spiga, P. & Zhang, H., 8 Mar 2019, In : Journal of Algebra. 16 p.

    Research output: Contribution to journalArticle

  4. Computing maximal subsemigroups of a finite semigroup

    Donoven, C. R., Mitchell, J. D. & Wilson, W. A., 1 Jul 2018, In : Journal of Algebra. 505, p. 559-596 38 p.

    Research output: Contribution to journalArticle

ID: 256752978

Top