Skip to content

Research at St Andrews

Environmental niches and metabolic diversity in Neoarchean lakes

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Author(s)

E. E. Stueeken, R. Buick, R. E. Anderson, J. A. Baross, N. J. Planavsky, T. W. Lyons

School/Research organisations

Abstract

The diversification of macro-organisms over the last 500 million years often coincided with the development of new environmental niches. Microbial diversification over the last 4 billion years likely followed similar patterns. However, linkages between environmental settings and microbial ecology have so far not been described from the ancient rock record. In this study, we investigated carbon, nitrogen, and molybdenum isotopes, and iron speciation in five non-marine stratigraphic units of the Neoarchean Fortescue Group, Western Australia, that are similar in age (2.78–2.72 Ga) but differ in their hydro-geologic setting. Our data suggest that the felsic-dominated and hydrologically open lakes of the Bellary and Hardey formations were probably dominated by methanogenesis (δ13Corg = −38.7 ± 4.2‰) and biologic N2 fixation (δ15Nbulk =−0.6 ± 1.0‰), whereas the Mt. Roe, Tumbiana and Kylena Formations, with more mafic siliciclastic sediments, preserve evidence of methanotrophy (δ13Corg as low as −57.4‰, δ13Ccarb as low as −9.2‰) and NH3 loss under alkaline conditions. Evidence of oxygenic photosynthesis is recorded only in the closed evaporitic Tumbiana lakes marked by abundant stromatolites, limited evidence of Fe and S cycling, fractionated Mo isotopes (δ98/95Mo = +0.4 ± 0.4‰), and the widest range in δ13Corg (−57‰ to −15‰), suggesting oxidative processes and multiple carbon fixation pathways. Methanotrophy in the three mafic settings was probably coupled to a combination of oxidants, including O2 and SO42-. Overall, our results may indicate that early microbial evolution on the Precambrian Earth was in part influenced by geological parameters. We speculate that expanding habitats, such as those linked to continental growth, may have been an important factor in the evolution of life.
Close

Details

Original languageEnglish
Pages (from-to)767-783
JournalGeobiology
Volume15
Issue number6
Early online date30 Aug 2017
DOIs
Publication statusPublished - Nov 2017

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Sulphur isotopes of alkaline magmas unlock long-term records of crustal recycling on Earth

    Hutchison, W., Babiel, R., Finch, A. A., Marks, M., Markl, G., Boyce, A. J., Stüeken, E. E., Friis, H., Borst, A. M. & Horsburgh, N. J., 16 Sep 2019, In : Nature Communications. 10, 12 p., 4208.

    Research output: Contribution to journalArticle

  2. Coupled evolution of nitrogen cycling and redoxcline dynamics on the Yangtze Block across the Ediacaran-Cambrian transition

    Chen, Y., Diamond, C. W., Stüeken, E. E., Cai, C., Gill, B. C., Zhang, F., Bates, S. M., Chu, X., Ding, Y. & Lyons, T. W., 18 May 2019, In : Geochimica et Cosmochimica Acta. In press

    Research output: Contribution to journalArticle

  3. Effects of pH on redox proxies in a Jurassic rift lake: implications for interpreting environmental records in deep time

    Stüeken, E. E., Martinez, A., Love, G., Olsen, P. E., Bates, S. & Lyons, T. W., 1 May 2019, In : Geochimica et Cosmochimica Acta. 252, p. 240-267

    Research output: Contribution to journalArticle

  4. Limited oxygen production in the Mesoarchean ocean

    Ossa Ossa, F., Hofmann, A., Spangenberg, J. E., Poulton, S. W., Stüeken, E. E., Schoenberg, R., Eickmann, B., Wille, M., Butler, M. & Bekker, A., 2 Apr 2019, In : Proceedings of the National Academy of Sciences of the United States of America. 116, 14, p. 6647-6652 6 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Biogeochemical probing of microbial communities in a basalt-hosted hot spring at Kverkfjöll volcano, Iceland

    Cousins, C. R., Fogel, M., Bowden, R., Crawford, I., Boyce, A., Cockell, C. & Gunn, M., Sep 2018, In : Geobiology. 16, 5, p. 507-521

    Research output: Contribution to journalArticle

  2. Tracking the rise of eukaryotes to ecological dominance with zinc isotopes

    Isson, T., Love, G., Dupont, C., Reinhard, C., Zumberge, A., Asael, D., Gueguen, B., McCrow, J., Gill, B., Owens, J., Rainbird, R., Rooney, A., Zhao, M-Y., Stueeken, E. E., Konhauser, K., John, S., Lyons, T. & Planavsky, N., Jul 2018, In : Geobiology. 16, 4, p. 341-352

    Research output: Contribution to journalArticle

  3. Sulphur cycling in a Neoarchean microbial mat

    Meyer, N. R., Zerkle, A. L. & Fike, D. A., May 2017, In : Geobiology. 15, 13, p. 353-365 13 p.

    Research output: Contribution to journalArticle

  4. The geobiological nitrogen cycle: from microbes to the mantle

    Zerkle, A. L. & Mikhail, S., May 2017, In : Geobiology. 15, 13, p. 343-352 10 p.

    Research output: Contribution to journalArticle

ID: 251009083