Skip to content

Research at St Andrews

Equitable partitions of Latin-square graphs

Research output: Contribution to journalArticle

DOI

Open Access Status

  • Embargoed (until 3/12/19)

Author(s)

R. A. Bailey, Peter J. Cameron, Alexander L. Gavrilyuk, Sergey V. Goryainov

School/Research organisations

Abstract

We study equitable partitions of Latin-square graphs, and give a complete classification of those whose quotient matrix does not have an eigenvalue -3.
Close

Details

Original languageEnglish
Pages (from-to)142-160
JournalJournal of Combinatorial Designs
Volume27
Issue number3
Early online date3 Dec 2018
DOIs
Publication statusPublished - 1 Mar 2019

    Research areas

  • Equitable partition, Latin-square graph, Eigenvalue, Cayley table

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Multi-part balanced incomplete-block designs

    Bailey, R. A. & Cameron, P. J., 18 Apr 2019, In : Statistical Papers. 60, 2, p. 55-76 22 p.

    Research output: Contribution to journalArticle

  2. Substitutes for the non-existent square lattice designs for 36 varieties (Extended Abstract)

    Bailey, R. A. & Cameron, P. J., 1 Apr 2019, Biuletyn Oceny Odmian. Gacek, E. (ed.). Słupia Wielka, Vol. 35. p. 11-13 3 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  3. Sesqui-arrays, a generalisation of triple arrays

    Bailey, R. A., Cameron, P. J. & Nilson, T., 1 Jun 2018, In : Australasian Journal of Combinatorics. 71, 3, p. 427-451

    Research output: Contribution to journalArticle

  4. On optimality and construction of circular repeated-measurements designs

    Bailey, R. A., Cameron, P. J., Filipiak, K., Kunert, J. & Markiewicz, A., Jan 2017, In : Statistica Sinica. 27, 1, p. 1-22 22 p.

    Research output: Contribution to journalArticle

  5. Using graphs to find the best block designs

    Bailey, R. A. & Cameron, P. J., 2013, Topics in Structural Graph Theory. Beineke, L. W. & Wilson, R. J. (eds.). Cambridge University Press, p. 282-317 (Encyclopaedia of Mathematics and its Applications; vol. 147).

    Research output: Chapter in Book/Report/Conference proceedingChapter (peer-reviewed)

Related by journal

  1. Triple arrays from difference sets

    Nilson, T. & Cameron, P. J., Nov 2017, In : Journal of Combinatorial Designs. 25, 11, p. 494-506 13 p.

    Research output: Contribution to journalArticle

  2. Frequency permutation arrays

    Huczynska, S. & Mullen, G. L., Nov 2006, In : Journal of Combinatorial Designs. 14, 6, p. 463-478 16 p.

    Research output: Contribution to journalArticle

  3. Embedding partial steiner triple systems so that their automorphisms extend

    Cameron, P. J., 1 Nov 2005, In : Journal of Combinatorial Designs. 13, 6, p. 466-470 5 p.

    Research output: Contribution to journalArticle

ID: 255781347