Skip to content

Research at St Andrews

Erratum to: Predicting Melting Points of Organic Molecules: Applications to Aqueous Solubility Prediction Using the General Solubility Equation (Molecular Informatics, 2015, 34, 11, (715-724), 10.1002/minf.201500052)

Research output: Contribution to journalComment/debatepeer-review

DOI

Abstract

In the published version of this article, Equation 1 (top and bottom) contains two errors, which present the first terms on the right hand sides of Equation 1 as being an order of magnitude too small. The equations should read: log10S = 0.8-log10P-0.01(MP-25) log10S = 0.5-log10P-0.01(MP-25) Equation 1. Top: original General Solubility Equation (GSE) from Yalkowsky and Valvani[2c]; bottom: revised GSE by Jain and Yalkowsky[2a]. Log10S is the logarithm to the base ten of the aqueous solubility (S; units referred to mol/L), log10P is the base ten logarithm of the n-octanol/water partition coefficient, and MP (°C) is the melting point.

Close

Details

Original languageEnglish
Number of pages1
JournalMolecular Informatics
DOIs
Publication statusPublished - 1 Oct 2016

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Are the sublimation thermodynamics of organic molecules predictable?

    McDonagh, J. L., Palmer, D. S., van Mourik, T. & Mitchell, J. B. O., 28 Nov 2016, In: Journal of Chemical Information and Modeling. 56, 11, p. 2162-2179

    Research output: Contribution to journalArticlepeer-review

  2. A review of methods for the calculation of solution free energies and the modelling of systems in solution

    Skyner, R. E., McDonagh, J. L., Groom, C. R., van Mourik, T. & Mitchell, J. B. O., 17 Mar 2015, In: Physical Chemistry Chemical Physics. 17, 9, p. 6174-6191

    Research output: Contribution to journalArticlepeer-review

  3. Uniting cheminformatics and chemical theory to predict the intrinsic aqueous solubility of crystalline druglike molecules

    McDonagh, J., Nath, N., De Ferrari, L., van Mourik, T. & Mitchell, J. B. O., 24 Feb 2014, In: Journal of Chemical Information and Modeling. 54, 3, p. 844-856 13 p.

    Research output: Contribution to journalArticlepeer-review

  4. First-Principles Calculation of the Intrinsic Aqueous Solubility of Crystalline Druglike Molecules

    Palmer, D. S., McDonagh, J. L., Mitchell, J. B. O., van Mourik, T. & Fedorov, M. V., Sep 2012, In: Journal of Chemical Theory and Computation. 8, 9, p. 3322-3337 16 p.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. A Random Forest model for predicting allosteric and functional sites on proteins

    Chen, A. S-Y., Westwood, N. J., Brear, P., Rogers, G. W., Mavridis, L. & Mitchell, J. B. O., 5 Apr 2016, In: Molecular Informatics. 35, 3-4, p. 125-135 11 p.

    Research output: Contribution to journalArticlepeer-review

  2. Greedy and linear ensembles of machine learning methods outperform single approaches for QSPR regression problems

    Kew, W. & Mitchell, J. B. O., Sep 2015, In: Molecular Informatics. 34, 9, p. 634-647

    Research output: Contribution to journalArticlepeer-review

  3. Development and Comparison of hERG Blocker Classifiers: Assessment on Different Datasets Yields Markedly Different Results

    Robinson, R. L. M., Glen, R. C. & Mitchell, J. B. O., May 2011, In: Molecular Informatics. 30, 5, p. 443-458 16 p.

    Research output: Contribution to journalArticlepeer-review

ID: 255683208

Top