Skip to content

Research at St Andrews

Evaluation of Ca Doped La0.2Sr0.7TiO3 as an Alternative Material for Use in SOFC Anodes

Research output: Contribution to journalArticle

DOI

Author(s)

Maarten Christiaan Verbraeken, Boris Iwanschitz, Andreas Mai, John Thomas Sirr Irvine

School/Research organisations

Abstract

Doped strontium titanates have been widely studied as potential anode materials in solid oxide fuel cells (SOFCs). The high n-type conductivity that can be achieved in these materials makes them well suited for use as the electronically conductive component in SOFC anodes. This makes them a potential alternative to nickel, the presence of which can be a major cause of degradation due to coking, sulfur poisoning and low tolerance to redox cycling. Here anode performance results are presented for an A-site deficient strontium titanate co-doped with lanthanum and calcium on the perovskite A-site, La0.20Sr0.25Ca0.45TiO3 (LSCTA-). LSCTA- anodes and LSM cathodes were screen printed on 160 mu m thick 6-ScSZ electrolyte supports. The LSCTA- anode backbone showed poor electrode performance, but its conductivity was sufficient to keep ohmic losses low. Upon impregnation with combinations of ceria and nickel, ohmic losses and polarization impedances are significantly reduced, resulting in a drastic improvement in anode performance. Unexpectedly, the performance of cells impregnated with both ceria and nickel showed an improvement upon redox cycling. A stable area specific resistance of 0.37 Omega cm(2) was achieved after 20 redox cycles and 250 hours of operation at 900 degrees C in H-2 with 8% H2O, showing excellent redox stability. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.001212jes] All rights reserved.

Close

Details

Original languageEnglish
Pages (from-to)F757-F762
Number of pages6
JournalJournal of The Electrochemical Society
Volume159
Issue number11
DOIs
Publication statusPublished - 2012

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Lattice strain-enhanced exsolution of nanoparticles in thin films

    Han, H., Park, J., Nam, S. Y., Choi, G. M., Parkin, S. S. P., Jang, H. M. & Irvine, J. T. S., 1 Apr 2019, In : Nature Communications. 10, 8 p., 1471.

    Research output: Contribution to journalArticle

  2. Oxygen storage capacity and thermal stability of brownmillerite-type Ca2(Al1-xGax)MnO5+δ oxides

    Huang, X., Ni, C. & Irvine, J. T. S., 14 Aug 2019, In : Journal of Alloys and Compounds. 810, 151865.

    Research output: Contribution to journalArticle

  3. B-site doped perovskite ferrate for efficient anode of a solid oxide fuel cell with in situ metal exsolution

    Ni, C., Zeng, Q., He, D., Peng, L., Xie, D-T., Irvine, J., Duan, S. & Ni, J-P., 29 Oct 2019, In : Journal of Materials Chemistry. In press

    Research output: Contribution to journalArticle

  4. Nanostructured perovskite solar cells

    McDonald, C., Ni, C., Maguire, P., Connor, P., Irvine, J. T. S., Mariotti, D. & Svrcek, V., 18 Oct 2019, In : Nanomaterials. 9, 10, 28 p., 1481.

    Research output: Contribution to journalArticle

  5. Enhanced cycling performance of magnesium doped lithium cobalt phosphate

    Kim, E. J., Miller, D., Irvine, J. T. S. & Armstrong, A. R., 26 Sep 2019, In : ChemElectroChem. 6, 18

    Research output: Contribution to journalArticle

Related by journal

  1. In situ thermal battery discharge using CoS2 as a cathode material

    Payne, J. L., Percival, J. D., Giagloglou, K., Crouch, C., Carins, G. M., Smith, R., Gover, R. & Irvine, J. T. S., 2 Aug 2019, In : Journal of The Electrochemical Society. 166, 12, p. A2660-A2664 5 p.

    Research output: Contribution to journalArticle

  2. Transition metal chlorides NiCl2, KNiCl3, Li6VCl8 and Li2MnCl4 as alternative cathode materials in primary Li thermal batteries

    Giagloglou, K., Payne, J. L., Crouch, C., Gover, R. K. B., Connor, P. A. & Irvine, J. T. S., 14 Nov 2018, In : Journal of The Electrochemical Society. 165, 14, p. A3510-A3516

    Research output: Contribution to journalArticle

  3. Synthesis and electrochemical study of CoNi2S4 as a novel cathode material in a primary Li thermal battery

    Giagloglou, K., Payne, J. L., Crouch, C., Gover, R., Connor, P. A. & Irvine, J. T. S., 25 Jul 2017, In : Journal of The Electrochemical Society. 164, 9, p. A2159-A2163

    Research output: Contribution to journalArticle

ID: 38003518

Top