Skip to content

Research at St Andrews

Evaluation of three rapid diagnostic tests for the detection of human infections with Plasmodium knowlesi

Research output: Contribution to journalArticle

Author(s)

Deshka Foster, Janet Cox Singh, Dayang S. A. Mohamad, Sanjeev Krishna, Pek P. Chin, Balbir Singh

School/Research organisations

Abstract

Background: Plasmodium knowlesi, a malaria parasite of Southeast Asian macaques, infects humans and can cause fatal malaria. It is difficult to diagnose by microscopy because of morphological similarity to Plasmodium malariae. Nested PCR assay is the most accurate method to distinguish P. knowlesi from other Plasmodium species but is not cost effective in resource-poor settings. Rapid diagnostic tests (RDTs) are recommended for settings where malaria is prevalent. In this study, the effectiveness of three RDTs in detecting P. knowlesi from fresh and frozen patient blood samples was evaluated.

Methods: Forty malaria patients (28 P. knowlesi, ten P. vivax and two P. falciparum) diagnosed by microscopy were recruited in Sarawak, Malaysian Borneo during a 16-month period. Patient blood samples were used to determine parasitaemia by microscopy, confirm the Plasmodium species present by PCR and evaluate three RDTs: OptiMAL-IT, BinaxNOW (R) Malaria and Paramax-3. The RDTs were also evaluated using frozen blood samples from 41 knowlesi malaria patients.

Results: OptiMAL-IT was the most sensitive RDT, with a sensitivity of 71% (20/28; 95% CI = 54-88%) for fresh and 73% (30/41; 95% CI = 59-87%) for frozen knowlesi samples. However, it yielded predominantly falciparum-positive results due to cross-reactivity of the P. falciparum test reagent with P. knowlesi. BinaxNOW (R) Malaria correctly detected non-P. falciparum malaria in P. knowlesi samples but was the least sensitive, detecting only 29% (8/28; 95% CI = 12-46%) of fresh and 24% (10/41; 95% CI = 11-37%) of frozen samples. The Paramax-3 RDT tested positive for P. vivax with PCR-confirmed P. knowlesi samples with sensitivities of 40% (10/25; 95% CI = 21-59%) with fresh and 32% (13/41; 95% CI = 17-46%) with frozen samples. All RDTs correctly identified P. falciparum- and P. vivax-positive controls with parasitaemias above 2,000 parasites/mu l blood.

Conclusions: The RDTs detected Plasmodium in P. knowlesi-infected blood samples with poor sensitivity and specificity. Patients with P. knowlesi could be misdiagnosed as P. falciparum with OptiMAL-IT, P. vivax with Paramax-3 and more correctly as non-P. vivax/non-P. falciparum with BinaxNOW (R) Malaria. There is a need for a sensitive and specific RDT for malaria diagnosis in settings where P. knowlesi infections predominate.

Close

Details

Original languageEnglish
Article number60
Number of pages7
JournalMalaria Journal
Volume13
DOIs
Publication statusPublished - 18 Feb 2014

    Research areas

  • Plasmodium knowlesi, Malaria diagnostics, Rapid diagnostic tests, Severe malaria, Falciparum, Amplification, Malaysia, Sensitivity, Performance, Traveler, Sabah, Vivax, PCR

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Plasmodium knowlesi: experimental model, zoonotic pathogen and golden opportunity?

    Cox-Singh, J., Jan 2018, In : Parasitology. 145, 1, p. 1-5 4 p.

    Research output: Contribution to journalEditorial

  2. Human infections with Plasmodium knowlesi - zoonotic malaria

    Millar, S. B. & Cox Singh, J., Jul 2015, In : Clinical Microbiology and Infection. 21, 7, p. 640-648

    Research output: Contribution to journalArticle

  3. Plasmodium knowlesi: from severe zoonosis to animal model

    Cox Singh, J. & Culleton, R., Jun 2015, In : Trends in Parasitology. 31, 6

    Research output: Contribution to journalArticle

  4. Plasmodium knowlesi genome sequences from clinical isolates reveal extensive genomic dimorphism

    Monsanto Pinheiro, M., Ahmed, M. A., Millar, S. B., Sanderson, T., Otto, T. D., Lu, W. C., Krishna, S., Rayner, J. C. & Cox Singh, J., 1 Apr 2015, In : PLoS One. 10, 4, 16 p., e0121303.

    Research output: Contribution to journalArticle

  5. Plasmodium knowlesi – an emerging pathogen

    Ahmed, M. A. & Cox Singh, J., Apr 2015, In : ISBT Science Series. 10, S1, p. 134-140

    Research output: Contribution to journalReview article

Related by journal

  1. The acquisition of long-lived memory B cell responses to merozoite surface protein-8 in individuals with Plasmodium vivax infection

    Kochayoo, P., Kittisenachai, N., Changrob, S., Wangriatisak, K., Muh, F., Chootong, P. & Han, E-T., 31 May 2019, In : Malaria Journal. 18, 10 p., 188.

    Research output: Contribution to journalArticle

  2. Diversity pattern of Duffy binding protein sequence among Duffy-negatives and Duffy-positives in Sudan

    Hoque, M. R., Elfaki, M. M. A., Ahmed, M. A., Lee, S-K., Muh, F., Albsheer, M. M. A., Hamid, M. M. A. & Han, E-T., 17 Aug 2018, In : Malaria Journal. 17, 10 p., 297.

    Research output: Contribution to journalArticle

  3. Estimation on local transmission of malaria by serological approach under low transmission setting in Myanmar

    Nyunt, M. H., Soe, T. N., Shein, T., Zaw, N. N., Han, S. S., Muh, F., Lee, S-K., Han, J-H., Park, J-H., Ha, K-S., Park, W. S., Hong, S-H., Kyaw, M. P. & Han, E-T., 5 Jan 2018, In : Malaria Journal. 17, 9 p., 6.

    Research output: Contribution to journalArticle

  4. Genetic diversity and natural selection of Plasmodium knowlesi merozoite surface protein 1 paralog gene in Malaysia

    Ahmed, M. A., Fauzi, M. & Han, E-T., 14 Mar 2018, In : Malaria Journal. 17, 11 p., 115.

    Research output: Contribution to journalArticle

  5. In vitro invasion inhibition assay using antibodies against Plasmodium knowlesi Duffy binding protein alpha and apical membrane antigen protein 1 in human erythrocyte-adapted P. knowlesi A1-H.1 strain

    Muh, F., Lee, S-K., Hoque, M. R., Han, J-H., Park, J-H., Firdaus, E. R., Moon, R. W., Lau, Y. L. & Han, E-T., 27 Jul 2018, In : Malaria Journal. 17, 11 p., 272.

    Research output: Contribution to journalArticle

ID: 116317427