Skip to content

Research at St Andrews

Experiments on the structure and stability of mode-2 internal solitary-like waves propagating on an offset pycnocline

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Author(s)

Magda Carr, Peter Davies, Ruud Hoebers

School/Research organisations

Abstract

The structure and stability of mode-2 internal solitary-like waves is investigated experimentally. A rank-ordered train of mode-2 internal solitary waves is generated using a lock release configuration. The pycnocline is
centred either on the mid-depth of the water column (the 0% offset case) or it is offset in the positive vertical direction by a fraction of 5%, 10% or 20% of the total fluid depth. It is found that offsetting the pycnocline has little effect on the basic wave properties (e.g wave speed, wave amplitude and wave length) but it does significantly affect wave stability. Instability takes the form of small K-H-like billows in the rear of the wave and small scale overturning in the core of the wave. In the 0% offset case, instability occurs on both the upper and lower interfaces of the pycnocline and is similar in extent and vigour over the two interfaces. As the offset percentage is increased, however, instability is more pronounced on the lower interface with little or no evidence of instability being observed on the upper interface. In the 20% offset case a mode-1 tail is associated with the wave and the wave characteristics resemble qualitatively the recent field observations of Shroyer et al [E. L. Shroyer, J. N. Moum and J. D. Nash, J. Geophys. Res. 115, C07001 (2010)].

Close

Details

Original languageEnglish
Article number046602
Number of pages19
JournalPhysics of Fluids
Volume27
Issue number4
Early online date13 Apr 2015
DOIs
Publication statusPublished - 2015

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by journal

  1. Physics of Fluids (Journal)

    David Gerard Dritschel (Editor)
    2005 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

Related by journal

  1. Entrapping of a vortex pair interacting with a fixed point vortex revisited. I. Point vortices

    Koshel, K. V., Reinaud, J. N., Riccardi, G. & Ryzhov, E. A., 28 Sep 2018, In : Physics of Fluids. 30, 9, 096603.

    Research output: Contribution to journalArticle

  2. Entrapping of a vortex pair interacting with a fixed point vortex revisited. II. Finite size vortices and the effect of deformation

    Reinaud, J. N., Koshel, K. V. & Ryzhov, E. A., 28 Sep 2018, In : Physics of Fluids. 30, 9, 10 p., 096604.

    Research output: Contribution to journalArticle

  3. Hetonic quartets in a two-layer quasi-geostrophic flow: V-states and stability

    Reinaud, J. N., Sokolovskiy, M. & Carton, X., 11 May 2018, In : Physics of Fluids. 30, 21 p., 056602.

    Research output: Contribution to journalArticle

  4. Geostrophic tripolar vortices in a two-layer fluid: linear stability and nonlinear evolution of equilibria

    Reinaud, J. N., Sokolovskiy, M. & Carton, X., Mar 2017, In : Physics of Fluids. 29, 3, 16 p., 036601.

    Research output: Contribution to journalArticle

  5. Interaction between a surface quasi-geostrophic buoyancy anomaly jet and internal vortices

    Reinaud, J. N., Dritschel, D. G. & Carton, X., Aug 2017, In : Physics of Fluids. 29, 8, 16 p., 086603.

    Research output: Contribution to journalArticle

ID: 182355532