Skip to content

Research at St Andrews

Exploring the structural basis of the selective inhibition of monoamine oxidase A by dicarbonitrile aminoheterocycles: Role of Asn181 and Ile335 validated by spectroscopic and computational studies

Research output: Contribution to journalArticlepeer-review

Author(s)

J. Juárez-Jiménez, E. Mendes, C. Galdeano, C. Martins, D.B. Silva, J. Marco-Contelles, M. Do Carmo Carreiras, F.J. Luque, R.R. Ramsay

School/Research organisations

Abstract

Since cyanide potentiates the inhibitory activity of several monoamine oxidase (MAO) inhibitors, a series of carbonitrile-containing aminoheterocycles was examined to explore the role of nitriles in determining the inhibitory activity against MAO. Dicarbonitrile aminofurans were found to be potent, selective inhibitors against MAO A. The origin of the MAO A selectivity was identified by combining spectroscopic and computational methods. Spectroscopic changes induced in MAO A by mono- and dicarbonitrile inhibitors were different, providing experimental evidence for distinct binding modes to the enzyme. Similar differences were also found between the binding of dicarbonitrile compounds to MAO A and to MAO B. Stabilization of the flavin anionic semiquinone by monocarbonitrile compounds, but destabilization by dicarbonitriles, provided further support to the distinct binding modes of these compounds and their interaction with the flavin ring. Molecular modeling studies supported the role played by the nitrile and amino groups in anchoring the inhibitor to the binding cavity. In particular, the results highlight the role of Asn181 and Ile335 in assisting the interaction of the nitrile-containing aminofuran ring. The network of interactions afforded by the specific attachment of these functional groups provides useful guidelines for the design of selective, reversible MAO A inhibitors.
Close

Details

Original languageEnglish
Pages (from-to)389-397
Number of pages9
JournalBiochimica et Biophysica Acta - Proteins and Proteomics
Volume1844
Issue number2
DOIs
Publication statusPublished - 1 Feb 2014

    Research areas

  • Carbonitrile aminofuran, Monoamine oxidase, Selective binding, Docking, Molecular dynamics, Altered flavin spectrum

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Parameters for irreversible inactivation of monoamine oxidase

    Ramsay, R. R., Basile, L., Maniquet, A., Hagenow, S., Pappalardo, M., Saija, M. C., Bryant, S., Albreht, A. & Guccione, S., 13 Dec 2020, In: Molecules. 25, 24, 25 p., 5908.

    Research output: Contribution to journalArticlepeer-review

  2. Neuroprotective actions of leptin facilitated through balancing mitochondrial morphology and improving mitochondrial function

    Cheng, Y., Buchan, M., Vitanova, K., Aitken, L., Gunn-Moore, F. J., Ramsay, R. R. & Doherty, G., 13 Oct 2020, In: Journal of Neurochemistry. 155, 2, p. 191-206 e15003.

    Research output: Contribution to journalArticlepeer-review

  3. Design, synthesis, molecular modelling and in vitro screening of monoamine oxidase inhibitory activities of novel quinazolyl hydrazine derivatives

    Amer, A., Hegazi, A. H., Alshekh, M. K., Ahmed, H. E. A., Soliman, S. M., Maniquet, A. & Ramsay, R. R., 22 Apr 2020, In: Royal Society Open Science. 7, 18 p., 200050.

    Research output: Contribution to journalArticlepeer-review

  4. Synthesis, biological evaluation, and molecular modeling of nitrile-containing compounds: exploring multiple activities as anti-Alzheimer agents

    Silva, D., Mendes, E., Summers, E. J., Neca, A., Jacinto, A. C., Reis, T., Agostinho, P., Bolea, I., Jimeno, M. L., Mateus, M. L., Oliveira-Campos, A. M. F., Unzeta, M., Marco-Contelles, J., Majekova, M., Ramsay, R. R. & Carreiras, M. C., 30 Aug 2019, In: Drug Development Research. Early View, DDR-19-0121.R1.

    Research output: Contribution to journalArticlepeer-review

  5. Electron carriers and energy conservation in mitochondrial respiration

    Ramsay, R. R., Jun 2019, In: ChemTexts. 5, 14 p., 9.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Kinetic and structural analysis of the irreversible inhibition of human monoamine oxidases by ASS234, a multi-target compound designed for use in Alzheimer's disease

    Esteban, G., Allan, J., Samadi, A., Mattevi, A., Unzeta, M., Marco-Contelles, J., Binda, C. & Ramsay, R. R., Jun 2014, In: Biochimica et Biophysica Acta - Proteins and Proteomics. 1844, 6, p. 1104–1110 6 p.

    Research output: Contribution to journalArticlepeer-review

  2. Hemocyanin conformational changes associated with SDS-induced phenol oxidase activation

    Baird, S., Kelly, S. M., Price, N. C., Jaenicke, E., Meesters, C., Nillius, D., Decker, H. & Nairn, J., Nov 2007, In: Biochimica et Biophysica Acta - Proteins and Proteomics. 1774, 11, p. 1380-1394 15 p.

    Research output: Contribution to journalArticlepeer-review

  3. Probing the substrate specificities of human PHOSPHO1 and PHOSPHO2

    Roberts, SJ., Stewart, A. J., Schmid, R., Blindauer, CA., Bond, SR., Sadler, PJ. & Farquharson, C., 31 Aug 2005, In: Biochimica et Biophysica Acta - Proteins and Proteomics. 1752, 1, p. 73-82 10 p.

    Research output: Contribution to journalArticlepeer-review

  4. Inhibitor interactions with the active site cofactor of MAO A

    Hynson, RB., Ramsay, R. R., Philp, D. & Wouters, J., 2002, In: Biochimica et Biophysica Acta - Proteins and Proteomics. 1601, 2, p. 867-871.

    Research output: Contribution to journalArticlepeer-review

ID: 108094037

Top