Skip to content

Research at St Andrews

Fabrication and characterization of a small tubular solid oxide fuel cell with the La0.43Ca0.37Ni0.06Ti0.94O3-γ anode

Research output: Chapter in Book/Report/Conference proceedingConference contribution

DOI

Author(s)

H. Zeng, K. Nowicki, J. T.S. Irvine, Y. Shi, N. Cai

School/Research organisations

Abstract

Tubular solid oxide fuel cells (SOFCs) have great potential in micro-combined heat and power systems and portable applications. A small tubular SOFC is developed and fabricated by tape casting and co-sintering. This method is advantageous for simple manufacturing, low cost and ability for mass production. The La0.43Ca0.37Ni0.06Ti0.94O3-γ (LCNT) is adopted as anode for its attractive redox performance and electrocatalytic activity promoted by exsolution of nickel nanoparticles. The power output of a single tubular SOFC at 850 °C increases from 0.32 W to 0.47 W by applying a constant voltage of 2.3 V for 10 min. With 3%H2O/H2 as fuel, the stability of redox performance of the tubular SOFC is tested and the cell endures 20 redox cycles at a fixed voltage of 0.7 V. SEM morphology shows that the exsolution of nickel nanoparticles is enhanced by reducing the perovskite under a constant potential, which increases the electrochemical activity and conductivity.

Close

Details

Original languageEnglish
Title of host publicationSolid Oxide Fuel Cells 16, SOFC XVI
EditorsK. Eguchi, S. C. Singhal
PublisherElectrochemical Society, Inc.
Pages447-456
Number of pages10
ISBN (Electronic)9781607685395
DOIs
Publication statusPublished - 8 Sep 2019
Event16th International Symposium on Solid Oxide Fuel Cells, SOFC XVI - Kyoto, Japan
Duration: 8 Sep 201913 Sep 2019
Conference number: 16
http://www.eguchi-lab.ehcc.kyoto-u.ac.jp/SOFC_XVI/

Publication series

NameECS Transactions
Number1
Volume91
ISSN (Print)1938-6737
ISSN (Electronic)1938-5862

Conference

Conference16th International Symposium on Solid Oxide Fuel Cells, SOFC XVI
Abbreviated titleSOFC
CountryJapan
CityKyoto
Period8/09/1913/09/19
Internet address

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Microwave irradiation synthesis to obtain La0.7-xPrxCa0.3MnO3 perovskites: electrical and electrochemical performance

    Ferrel-Alvarez, A. C., Domínguez-Crespo, M. A., Cong, H., Torres-Huerta, A. M., Palma-Ramírez, D. & Irvine, J. T. S., 31 Aug 2020, In : Journal of Alloys and Compounds. 851, 156882.

    Research output: Contribution to journalArticle

  2. Graphitic-C3N4 coated floating glass beads for photocatalytic destruction of synthetic and natural organic compounds in water under UV light

    Hui, J., Pestana, C. J., Caux, M., Gunaratne, H. Q. N., Edwards, C., Robertson, P. K. J., Lawton, L. A. & Irvine, J. T. S., 28 Sep 2020, In : Journal of Photochemistry and Photobiology A: Chemistry. 405, 112935.

    Research output: Contribution to journalArticle

  3. Activation of anion redox in P3 structure cobalt-doped sodium manganese oxide via introduction of transition metal vacancies

    Kim, E. J., Mofredj, K., Pickup, D., Chadwick, A., Irvine, J. T. S. & Armstrong, R., 20 Oct 2020, In : Journal of Power Sources. 481, 229010.

    Research output: Contribution to journalArticle

  4. Photocatalytic removal of the cyanobacterium Microcystis aeruginosa PCC7813 and four microcystins by TiO2 coated porous glass beads with UV-LED irradiation

    Pestana, C. J., Portela Noronha, J., Hui, J., Edwards, C., Gunaratne, H. Q. N., Irvine, J. T. S., Robertson, P. K. J., Capelo-Neto, J. & Lawton, L. A., 25 Nov 2020, In : Science of the Total Environment. 745, 141154.

    Research output: Contribution to journalArticle

  5. Perovskite oxynitride solid solutions of LaTaON2-CaTaO2N with greatly enhanced photogenerated charge separation for solar-driven overall water splitting

    Wang, Y., Kang, Y., Zhu, H., Liu, G., Irvine, J. T. S. & Xu, X., 25 Nov 2020, In : Advanced Science . Early View, 8 p., 2003343.

    Research output: Contribution to journalArticle

ID: 262433703

Top